5,918 research outputs found
Experimental Realization of the Fuse Model of Crack Formation
In this work, we present an experimental investigation of the fuse model. Our
main goal was to study the influence of the disorder on the fracture process.
The experimental apparatus used consisted of an square lattice with
fuses placed on each bond of the lattice. Two types of materials were used as
fuses: copper and steel wool wires. The lattice composed only by copper wires
varied from a weakly disordered system to a strongly disordered one. The
lattice formed only by steel wool wires corresponded to a strongly disordered
one. The experimental procedure consisted of applying a potential difference V
to the lattice and measuring the respective current I. The characteristic
function obtained was investigated in order to find the scaling law
dependence of the voltage and the current on the system size when the
disorder was changed. Our results show that the scaling laws are only verified
for the disordered regime.Comment: 4 pages, 8 figures.ep
Collective modes in relativistic npe matter at finite temperature
Isospin and density waves in neutral neutron-proton-electron (npe) matter are
studied within a relativistic mean-field hadron model at finite temperature
with the inclusion of the electromagnetic field. The dispersion relation is
calculated and the collective modes are obtained. The unstable modes are
discussed and the spinodals, which separate the stable from the unstable
regions, are shown for different values of the momentum transfer at various
temperatures. The critical temperatures are compared with the ones obtained in
a system without electrons. The largest critical temperature, 12.39 MeV, occurs
for a proton fraction y_p=0.47. For y_p=0.3 we get =5 MeV and for
y_p>0.495 MeV.
It is shown that at finite temperature the distillation effect in asymmetric
matter is not so efficient and that electron effects are particularly important
for small momentum transfers.Comment: 10 pages, 6 figure
Density Dependent Parametrization Models: Formalism and Applications
In this work we derive a formalism to incorporate asymmetry and temperature
effects in the Brown-Rho (BR) scaled lagrangian model in a mean field theory.
The lagrangian density discussed in this work requires less parameters than the
usual models with density dependent couplings. We also present the formalism
with the inclusion of the eight lightest baryons, two lightest leptons, beta
equilibrium and charge neutrality in order to apply the BR scaled model to the
study of neutron stars. The results are again compared with the ones obtained
from another density dependent parametrization model. The role played by the
rearrangement term at T=0 for nuclear or neutron star matter and at finite
temperature is investigated. The BR scaled model is shown to be a good tool in
studies involving density dependent effective masses and in astrophysics
applications.Comment: 23 pages, 10 figure
Relativistic Mean-Field Hadronic Models under Nuclear Matter Constraints
Relativistic mean-field (RMF) models have been widely used in the study of
many hadronic frameworks because of several important aspects not always
present in nonrelativistic models, such as intrinsic Lorentz covariance,
automatic inclusion of spin, appropriate saturation mechanism for nuclear
matter, causality and, therefore, no problems related to superluminal speed of
sound. With the aim of identifying the models which best satisfy well known
properties of nuclear matter, we have analyzed parameterizations of seven
different types of RMF models under three different sets of constraints related
to symmetric nuclear matter, pure neutron matter, symmetry energy, and its
derivatives. One of these (SET1) is formed of the same constraints used in a
recent work [M. Dutra et al., Phys. Rev. C 85, 035201 (2012)] in which we
analyzed Skyrme parameterizations. The results pointed to models
consistent with all constraints. By using another set of constraints, namely,
SET2a, formed by the updated versions of the previous one, we found models
approved simultaneously. Finally, in the third set, named SET2b, in which the
values of the constraints are more restrictive, we found consistent models.
Another interesting feature of our analysis is that the results change
dramatically if we do not consider the constraint regarding the volume part of
the isospin incompressibility (). In this case, we have
approved models in SET2a and in SET2b.Comment: 63 pages, 3 figures and 9 tables. Version accepted for publication in
PR
Situação atual e perspectivas do ensino, capacitação e pesquisa agroflorestal no Brasil: uma abordagem com ĂȘnfase na regiĂŁo amazĂŽnica.
Trabalhos apresentados no Congresso Brasileiro de Sistemas Agroflorestais, 4., 2002, Ilhéus
Topological energy barrier for skyrmion lattice formation in MnSi
We report the direct measurement of the topological skyrmion energy barrier
through a hysteresis of the skyrmion lattice in the chiral magnet MnSi.
Measurements were made using small-angle neutron scattering with a custom-built
resistive coil to allow for high-precision minor hysteresis loops. The
experimental data was analyzed using an adapted Preisach model to quantify the
energy barrier for skyrmion formation and corroborated by the minimum-energy
path analysis based on atomistic spin simulations. We reveal that the skyrmion
lattice in MnSi forms from the conical phase progressively in small domains,
each of which consisting of hundreds of skyrmions, and with an activation
barrier of several eV.Comment: Final accepted versio
Relativistic Mean-Field Models and Nuclear Matter Constraints
This work presents a preliminary study of 147 relativistic mean-field (RMF)
hadronic models used in the literature, regarding their behavior in the nuclear
matter regime. We analyze here different kinds of such models, namely: (i)
linear models, (ii) nonlinear \sigma^3+\sigma^4 models, (iii)
\sigma^3+\sigma^4+\omega^4 models, (iv) models containing mixing terms in the
fields \sigma and \omega, (v) density dependent models, and (vi) point-coupling
ones. In the finite range models, the attractive (repulsive) interaction is
described in the Lagrangian density by the \sigma (\omega) field. The isospin
dependence of the interaction is modeled by the \rho meson field. We submit
these sets of RMF models to eleven macroscopic (experimental and empirical)
constraints, used in a recent study in which 240 Skyrme parametrizations were
analyzed. Such constraints cover a wide range of properties related to
symmetric nuclear matter (SNM), pure neutron matter (PNM), and both SNM and
PNM.Comment: 3 Pages, submitted for proceedings of XXXV Reuni\~ao de Trabalho
sobre F\'isica Nuclear no Brasil 201
The pasta phase within density dependent hadronic models
In the present paper we investigate the onset of the pasta phase with
different parametrisations of the density dependent hadronic model and compare
the results with one of the usual parametrisation of the non-linear Walecka
model. The influence of the scalar-isovector virtual delta meson is shown. At
zero temperature two different methods are used, one based on coexistent phases
and the other on the Thomas-Fermi approximation. At finite temperature only the
coexistence phases method is used. npe matter with fixed proton fractions and
in beta-equilibrium are studied. We compare our results with restrictions
imposed on the the values of the density and pressure at the inner edge of the
crust, obtained from observations of the Vela pulsar and recent isospin
diffusion data from heavy-ion reactions, and with predictions from spinodal
calculations.Comment: 15 pages, 11 figures and 7 table
The importance of the mixed phase in hybrid stars built with the Nambu-Jona-Lasinio model
We investigate the structure of hybrid stars based on two different
constructions: one is based on the Gibbs condition for phase coexistence and
considers the existence of a mixed phase (MP), and the other is based on the
Maxwell construction and no mixed phase is obtained. The hadron phase is
described by the non-linear Walecka model (NLW) and the quark phase by the
Nambu-Jona-Lasinio model (NJL). We conclude that the masses and radii obtained
are model dependent but not significantly different for both constructions.Comment: 8 pages, 7 figures, 3 table
- âŠ