212 research outputs found

    Regulating with a Carrot: Experimenting with Incentives for Clean Air

    Get PDF

    Determinants of immune complex-mediated glomerulonephritis

    Get PDF
    Determinants of immune complex-mediated glomerulonephritis. We have studied the influence of steric factors on the clinico-pathologic expression of immune complex-mediated glomerular diseases, utilizing ferritin as an exogenous antigen. The tracer was planted in the left kidney either in the subepithelial layer of the glomerular capillary wall or on the endothelium and lamina rara interna. Subepithelial immune complex formation resulted in non-inflammatory injury with heterologous-and autologous proteinuric phases (115 Β± 16 mg/24 hrs on day 2; 183 Β± 16 mg/24 hrs on day 9) lasting four to five weeks. The glomerular filtration rate of the experimental left kidney was reduced by 19% at day 3, and was increased by 20% at day 12 over right kidney values. Immune complexes persisted for more than seven weeks in the lamina rara externa. In contrast, immune complex deposition on the endothelium and in the lamina rara interna led to acute transient anuria, with a 38% drop in glomerular filtration rate at one hour, massive platelet accumulation, followed by a strong inflammatory response. Proteinuria did not develop. Functional and structural integrity was restored within 24 hours, with complete clearing of immune deposits. We conclude that the distribution of exogenous antigens within the capillary wall determines the structural and functional expression of immune-mediated glomerular diseases

    Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods

    Get PDF
    Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made

    An integrated portable system for single chip simultaneous measurement of multiple disease associated metabolites

    Get PDF
    Metabolites, the small molecules that underpin life, can act as indicators of the physiological state of the body when their abundance varies, offering routes to diagnosis of many diseases. The ability to assay for multiple metabolites simultaneously will underpin a new generation of precision diagnostic tools. Here, we report the development of a handheld device based on complementary metal oxide semiconductor (CMOS) technology with multiple isolated micro-well reaction zones and integrated optical sensing allowing simultaneous enzyme-based assays of multiple metabolites (choline, xanthine, sarcosine and cholesterol) associated with multiple diseases. These metabolites were measured in clinically relevant concentration range with minimum concentrations measured: 25 ΞΌM for choline, 100 ΞΌM for xanthine, 1.25 ΞΌM for sarcosine and 50 ΞΌM for cholesterol. Linking the device to an Android-based user interface allows for quantification of metabolites in serum and urine within 2 min of applying samples to the device. The quantitative performance of the device was validated by comparison to accredited tests for cholesterol and glucose

    Predictive Power Estimation Algorithm (PPEA) - A New Algorithm to Reduce Overfitting for Genomic Biomarker Discovery

    Get PDF
    Toxicogenomics promises to aid in predicting adverse effects, understanding the mechanisms of drug action or toxicity, and uncovering unexpected or secondary pharmacology. However, modeling adverse effects using high dimensional and high noise genomic data is prone to over-fitting. Models constructed from such data sets often consist of a large number of genes with no obvious functional relevance to the biological effect the model intends to predict that can make it challenging to interpret the modeling results. To address these issues, we developed a novel algorithm, Predictive Power Estimation Algorithm (PPEA), which estimates the predictive power of each individual transcript through an iterative two-way bootstrapping procedure. By repeatedly enforcing that the sample number is larger than the transcript number, in each iteration of modeling and testing, PPEA reduces the potential risk of overfitting. We show with three different cases studies that: (1) PPEA can quickly derive a reliable rank order of predictive power of individual transcripts in a relatively small number of iterations, (2) the top ranked transcripts tend to be functionally related to the phenotype they are intended to predict, (3) using only the most predictive top ranked transcripts greatly facilitates development of multiplex assay such as qRT-PCR as a biomarker, and (4) more importantly, we were able to demonstrate that a small number of genes identified from the top-ranked transcripts are highly predictive of phenotype as their expression changes distinguished adverse from nonadverse effects of compounds in completely independent tests. Thus, we believe that the PPEA model effectively addresses the over-fitting problem and can be used to facilitate genomic biomarker discovery for predictive toxicology and drug responses

    Biology-inspired microphysiological systems to advance patient benefit and animal welfare in drug development

    Get PDF
    The first microfluidic microphysiological systems (MPS) entered the academic scene more than 15 years ago and were considered an enabling technology to human (patho)biology in vitro and, therefore, provide alternative approaches to laboratory animals in pharmaceutical drug development and academic research. Nowadays, the field generates more than a thousand scientific publications per year. Despite the MPS hype in academia and by platform providers, which says this technology is about to reshape the entire in vitro culture landscape in basic and applied research, MPS approaches have neither been widely adopted by the pharmaceutical industry yet nor reached regulated drug authorization processes at all. Here, 46 leading experts from all stakeholders - academia, MPS supplier industry, pharmaceutical and consumer products industries, and leading regulatory agencies - worldwide have analyzed existing challenges and hurdles along the MPS-based assay life cycle in a second workshop of this kind in June 2019. They identified that the level of qualification of MPS-based assays for a given context of use and a communication gap between stakeholders are the major challenges for industrial adoption by end-users. Finally, a regulatory acceptance dilemma exists against that background. This t4 report elaborates on these findings in detail and summarizes solutions how to overcome the roadblocks. It provides recommendations and a roadmap towards regulatory accepted MPS-based models and assays for patients' benefit and further laboratory animal reduction in drug development. Finally, experts highlighted the potential of MPS-based human disease models to feedback into laboratory animal replacement in basic life science research.Toxicolog

    The elements of murder A history of poison

    No full text
    • …
    corecore