10 research outputs found
Arbitrary quantum circuits on a fully integrated two-qubit computation register for a trapped-ion quantum processor
We report on the implementation of arbitrary circuits on a universal two-qubit register that can act as the computational module in a trapped-ion quantum computer based on the quantum charge-coupled device architecture. A universal set of quantum gates is implemented on a two-ion Coulomb crystal of Be+9 ions using only chip-integrated microwave addressing. Individual-ion addressing is implemented using microwave micromotion sideband transitions; we obtain upper limits on addressing crosstalk in the register. Arbitrary two-qubit operations are characterized using the cycle benchmarking protocol
Numerical optimization of amplitude-modulated pulses in microwave-driven entanglement generation
Microwave control of trapped ions can provide an implementation of high-fidelity two-qubit gates free from errors induced by photon scattering. Furthermore, microwave conductors may be embedded into a scalable trap structure, providing the chip-level integration of control that is desirable for scaling. Recent developments have demonstrated how amplitude modulation of the gate drive can permit a two-qubit entangling operation to become robust against motional mode noise and other experimental imperfections. Here, we discuss a method for the numerical optimization of the microwave pulse envelope to produce gate pulses with improved resilience, faster operation and higher energy efficiency
Effects of Dopamine Receptor Antagonist Antipsychotic Therapy on Blood Pressure
WHAT IS KNOWN AND OBJECTIVE: Hypertension, a major risk factor for adverse cardiovascular events, such as stroke and myocardial infarction, affects 80 million American adults. The aetiology of hypertension is multifaceted and difficult to identify. Dopamine receptors, especially those in the kidneys, play a role in blood pressure regulation, and alterations in their function can cause hypertension. The objective of this review was to investigate the association between the use of dopamine antagonists with hypertension focusing especially on second-generation antipsychotics, like clozapine that is D4 receptor antagonist.
METHODS: A literature review was conducted using MEDLINE, Ovid, Science Direct, Web of Science and Cochrane Database of Systematic Reviews databases with keywords:hypertension, hypotension, renin-angiotensin-aldosterone system, dopaminergic receptors, blood pressure, antipsychotics. Inclusion criteria were human or animal studies, systematic reviews, meta-analyses, randomized controlled trials, case report/series, published in selected for inclusion.
RESULTS AND DISCUSSION: All 5 dopamine receptor subtypes (ie D1, D2, D3, D4 and D5) regulate sodium excretion and BP. The D1, D3 and D4 receptors interact directly with the renin-angiotensin-aldosterone system, whereas D2 and D5 receptors directly interact with the sympathetic nervous system to regulate BP. Use of dopaminergic agonists or antagonists could therefore disturb the regulation of BP by dopamine receptors.
WHAT IS NEW AND CONCLUSION: Based upon this review, individuals on antipsychotic agents, particularly clozapine, should be routinely monitored for hypertension, and addition of antihypertensive agents such as angiotensin-converting enzyme (ACE) inhibitors or angiotensin receptor blockers (ARBs) is indicated if hypertension occurs