3 research outputs found

    Development of small-scale fluidised bed bioreactor for 3D cell culture

    Get PDF
    Three-dimensional cell culture has gained significant importance by producing physiologically relevant in vitro models with complex cell-cell and cell-matrix interactions. However, current constructs lack vasculature, efficient mass transport and tend to reproduce static or short-term conditions. The work presented aimed to design a benchtop fluidised bed bioreactor (sFBB) for hydrogel encapsulated cells to generate perfusion for homogenous diffusion of nutrients and, host substantial biomass for long-term evolution of tissue-like structures and “per cell” performance analysis. The sFBB induced consistent fluidisation of hydrogel spheres while maintaining their shape and integrity. Moreover, this system expanded into a multiple parallel units’ setup with equivalent performances enabling simultaneous comparisons. Long term culture of alginate encapsulated hepatoblastoma cells under dynamic environment led to proliferation of highly viable cell spheroids with a 2-fold increase in cellular density over static (27.3 vs 13.4 million cells/mL beads). Upregulation of hepatic phenotype markers (transcription factor C/EBP-α and drug-metabolism CYP3A4) was observed from an early stage in dynamic culture. This environment also affected ERK1/2 signalling pathway, progressively reducing its activation while increasing it in static conditions. Furthermore, culture of primary human mesenchymal stem cells was evaluated. Cell proliferation was not observed but continuous perfusion sustained their viability and undifferentiated phenotype, enabling differentiation into chondrogenic and adipogenic lineages after de-encapsulation. These biological readouts validated the sFBB as a robust dynamic platform and the prototype design was optimised using computer-aided design and computational fluid dynamics, followed by experimental tests. This thesis proved that dynamic environment promoted by fluidisation sustains biomass viability in long-term cell culture and leads 3D cell constructs with physiologically relevant phenotype. Therefore, this bioreactor would constitute a simple and versatile tool to generate in vitro tissue models and test their response to different agents, potentially increasing the complexity of the system by modifying the scaffold or co-culturing relevant cell types

    NEOTROPICAL CARNIVORES: a data set on carnivore distribution in the Neotropics

    No full text
    Mammalian carnivores are considered a key group in maintaining ecological health and can indicate potential ecological integrity in landscapes where they occur. Carnivores also hold high conservation value and their habitat requirements can guide management and conservation plans. The order Carnivora has 84 species from 8 families in the Neotropical region: Canidae; Felidae; Mephitidae; Mustelidae; Otariidae; Phocidae; Procyonidae; and Ursidae. Herein, we include published and unpublished data on native terrestrial Neotropical carnivores (Canidae; Felidae; Mephitidae; Mustelidae; Procyonidae; and Ursidae). NEOTROPICAL CARNIVORES is a publicly available data set that includes 99,605 data entries from 35,511 unique georeferenced coordinates. Detection/non-detection and quantitative data were obtained from 1818 to 2018 by researchers, governmental agencies, non-governmental organizations, and private consultants. Data were collected using several methods including camera trapping, museum collections, roadkill, line transect, and opportunistic records. Literature (peer-reviewed and grey literature) from Portuguese, Spanish and English were incorporated in this compilation. Most of the data set consists of detection data entries (n = 79,343; 79.7%) but also includes non-detection data (n = 20,262; 20.3%). Of those, 43.3% also include count data (n = 43,151). The information available in NEOTROPICAL CARNIVORES will contribute to macroecological, ecological, and conservation questions in multiple spatio-temporal perspectives. As carnivores play key roles in trophic interactions, a better understanding of their distribution and habitat requirements are essential to establish conservation management plans and safeguard the future ecological health of Neotropical ecosystems. Our data paper, combined with other large-scale data sets, has great potential to clarify species distribution and related ecological processes within the Neotropics. There are no copyright restrictions and no restriction for using data from this data paper, as long as the data paper is cited as the source of the information used. We also request that users inform us of how they intend to use the data

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved
    corecore