42 research outputs found
Synthesis and transfer of galactolipids in the chloroplast envelope membranes of \u3ci\u3eArabidopsis thaliana\u3c/i\u3e
Galactolipids [monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol
(DGDG)] are the hallmark lipids of photosynthetic
membranes. The galactolipid synthases MGD1 and DGD1
catalyze consecutive galactosyltransfer reactions but localize to the
inner and outer chloroplast envelopes, respectively, necessitating
intermembrane lipid transfer. Here we show that the N-terminal
sequence of DGD1 (NDGD1) is required for galactolipid transfer
between the envelopes. Different diglycosyllipid synthases (DGD1,
DGD2, and Chloroflexus glucosyltransferase) were introduced into
the dgd1-1 mutant of Arabidopsis in fusion with N-terminal extensions
(NDGD1 and NDGD2) targeting to the outer envelope. Reconstruction
of DGDG synthesis in the outer envelope membrane was
observed only with diglycosyllipid synthase fusion proteins carrying
NDGD1, indicating that NDGD1 enables galactolipid translocation
between envelopes. NDGD1 binds to phosphatidic acid (PA) in membranes
and mediates PA-dependent membrane fusion in vitro.
These findings provide a mechanism for the sorting and selective
channeling of lipid precursors between the galactolipid pools of the
two envelope membranes
Brucella suis biovar 1 infection in a dog with orchitis in Germany
In 2021, a case of canine brucellosis diagnosed in a dog with orchitis was presented to a veterinary practice in Germany. Serological testing excluded Brucella (B.) canis as a causative agent, but molecular analysis revealed the presence of B. suis biovar 1. Since biovar 1 is not endemic in Europe and the dog had no history of travel to endemic areas, a comprehensive epidemiological investigation was conducted using whole genome sequence data to determine the source of infection. We describe the clinical progress of the animal and the potential infection of a veterinary clinic employee. The findings highlight the importance of considering less common Brucella species as possible causes of canine brucellosis. The data also emphasize that it is quite challenging to identify Brucella species in a routine diagnostic laboratory and to conduct epidemiological investigations to unveil possible transmission routes
Das Forschungsdatenzentrum der Universität Hamburg
The more recent discussion of research data practices at relevant conferences, workshops and respective publications suggest substantially different foci of problems and solutions in managing data between scientific disciplines. There seems to be a particularly profound gap in natural science and humanities whereas social and life sciences are placed somewhere in between. Indeed data centers tailored to the specific needs of a single discipline (physics, chemistry, climate studies) are numerous in science and tend to be nearly absent for a specific humanities subject. While the former ask for and report solutions on scaling up (larger quantities of data can be run by the same application) and scaling out (larger quantities of data can use the same infrastructure), the latter are concerned with the heterogeneity of relatively small amounts of data (long-tail problem) and a divergence of agreed standards; something we may term as cross scaling. In either case, an efficiency problem has to be solved. On the one hand, huge amounts of data have to be handled within an acceptable time frame, on the other hand, many different applications with diverse functionalities have to be handled with an acceptable number of resources.
We would like to argue here that independent from the discipline either optimization problem should be addressed. Throughout the last decade, we have also observed that projects in science diversify and prefer individualized solutions which additionally hints at increasing data heterogeneity in natural science as well while, at the same time, some humanities projects produce petabytes of data. To show the necessity of a differentiated approach, the research data center of Universität Hamburg is offered as a case in point. The evolution of the center specialized in humanities projects to a research data center offering services for the whole university whereas other disciplinary data centers continue to exist side by side illustrates the entire range of tasks of data stewardship. It includes the continuous development of services while getting more and more involved in natural science projects as well as task sharing and communication with other data institutions. A core asset to understand the requirements of each discipline is a multidisciplinary team. Yet, the main organizing principle of the offered services centers around the stages of the data life cycle (1. data creation and deposit, 2. managing active data, 3. data repositories and archives, 4. data catalog and registries). The interdigitation of these stages is paramount in the long term strategy
Observation of Photoion Backward Emission in Photoionization of He and N2
We experimentally investigate the effects of the linear photon momentum on
the momentum distributions of photoions and photoelectrons generated in
one-photon ionization in an energy range of 300 eV 40 keV.
Our results show that for each ionization event the photon momentum is imparted
onto the photoion, which is essentially the system's center of mass.
Nevertheless, the mean value of the ion momentum distribution along the light
propagation direction is backward-directed by times the photon momentum.
These results experimentally confirm a 90 year old prediction.Comment: 5 pages, 3 figure
Framework and baseline examination of the German National Cohort (NAKO)
The German National Cohort (NAKO) is a multidisciplinary, population-based prospective cohort study that aims to investigate the causes of widespread diseases, identify risk factors and improve early detection and prevention of disease. Specifically, NAKO is designed to identify novel and better characterize established risk and protection factors for the development of cardiovascular diseases, cancer, diabetes, neurodegenerative and psychiatric diseases, musculoskeletal diseases, respiratory and infectious diseases in a random sample of the general population. Between 2014 and 2019, a total of 205,415 men and women aged 19–74 years were recruited and examined in 18 study centres in Germany. The baseline assessment included a face-to-face interview, self-administered questionnaires and a wide range of biomedical examinations. Biomaterials were collected from all participants including serum, EDTA plasma, buffy coats, RNA and erythrocytes, urine, saliva, nasal swabs and stool. In 56,971 participants, an intensified examination programme was implemented. Whole-body 3T magnetic resonance imaging was performed in 30,861 participants on dedicated scanners. NAKO collects follow-up information on incident diseases through a combination of active follow-up using self-report via written questionnaires at 2–3 year intervals and passive follow-up via record linkages. All study participants are invited for re-examinations at the study centres in 4–5 year intervals. Thereby, longitudinal information on changes in risk factor profiles and in vascular, cardiac, metabolic, neurocognitive, pulmonary and sensory function is collected. NAKO is a major resource for population-based epidemiology to identify new and tailored strategies for early detection, prediction, prevention and treatment of major diseases for the next 30 years. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10654-022-00890-5
The genetic architecture of the human cerebral cortex
The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder
The function of the p21-activated kinase Mbt in neuroblasts during the development of the central nervous system of Drosophila melanogaster
p21-aktivierte Kinasen regulieren zahlreiche zelluläre Prozesse, die während der Entwicklung, aber auch beispielsweise bei der Krebsentstehung, von zentraler Bedeutung sind. Mbt, das einzige Typ II PAK-Protein von Drosophila melanogaster, spielt eine Rolle bei der Gehirnentwicklung. Eine Nullmutation von mbt, mbtP1, bildet kleinere Gehirne mit stark verkleinerten Pilzkörpern aus. In dieser Arbeit wurde die Funktion von Mbt in Neuroblasten untersucht. Mbt wurde als Teil des apikalen Proteinkomplexes in Neuroblasten des Zentralhirns nachgewiesen. Die apikale Lokalisation von Mbt ist Zellzyklus-abhängig und wird über Bindung an Cdc42 reguliert. Sie ist essentiell für die Funktion von Mbt in Neuroblasten. Trotz apikaler Mbt-Lokalisation in Neuroblasten zeigte die mbt Nullmutante keine Defekte des basalen Mechanismus der asymmetrischen Zellteilung. Mud zeigte geringfügige Lokalisationsveränderungen, die auf einen möglichen Einfluss von Mbt hinweisen. Obwohl PAKs zentrale Regulatoren des Zytoskeletts sind, zeigte die mbtP1 Mutante keine offensichtlichen Veränderungen des Aktin- und Tubulin-Zytoskeletts. Armadillo, ein Aktin-assoziiertes Mbt-Substrat, zeigte ebenfalls keine Lokalisationsveränderung in Neuroblasten. Mbt steuert jedoch die apikale Anreicherung von Cno, einem weiteren Aktin-assoziierten Protein, in Neuroblasten. Darüber hinaus beeinflusst Mbt die Zellgröße von Neuroblasten, sowie deren Proliferationspotenzial und Überleben. mbtP1 Neuroblasten sind kleiner als wildtypische Neuroblasten, haben ein geringeres Proliferationsvermögen und eine geringere Überlebenswahrscheinlichkeit. Der Zelltod von Neuroblasten ist jedoch ein sekundärer Effekt. Daher kann eine Blockierung von Apoptose den adulten Pilzkörperphänotyp nicht retten. Signalwege, die Zellgröße und Proliferation regulieren, wurden auf eine Beteiligung von Mbt hin analysiert. mbtP1 induzierte leichte Effekte im Insulin-Signalweg und die Delokalisation eines nukleolären Proteins. Eine genetische Interaktion von mbtP1 mit Mutationen in Genen des klassischen MAPK-Signalweges identifzierte mbt als Positivregulator dieses Signalweges im Auge. Ein ähnlicher, schwächerer Effekt wurde auch bzgl. der Proliferation und Größe von Neuroblasten beobachtet. Eine 2D-Gelanalyse von Larvengehirnen identifizierte Bic und Hsp83 als mögliche von Mbt regulierte Proteine. Diese Arbeit charakterisiert eine bisher unbekannte Funktion der p21-aktivierten Kinase Mbt in neuronalen Stammzellen und liefert damit Ansatzpunkte für eine detaillierte Aufklärung der Funktionsmechanismen von Typ II PAKs bei der Regulation von Zellproliferation und Überlebenp21-activated kinases regulate numerous cellular processes central not only during development, but also for example for cancer pathogenesis. Mbt, the only type II PAK in Drosophila, regulates brain development. The mbt null mutant mbtP1 exhibits reduced brain size, with the mushroom bodies showing the most pronounced reduction. In this work, the function of Mbt in neuroblasts was investigated. Mbt was identified as a component of the apical protein complex in central brain neuroblasts. The apical localization of Mbt was cell cycle dependent and regulated by binding to Cdc42, which is essential for Mbt function in neuroblasts. Despite apical localization of Mbt, the mbtP1 null allel showed no defects in the basic mechanism of asymmetric cell division in larval neuroblasts. However, Mud showed minor localization changes indicating a possible influence of Mbt. Even though PAKs are well-known regulators of the cytoskeleton, no obvious changes in the actin and tubulin cytoskeleton were observed in mbtP1 neuroblasts. The localization of Armadillo, an actin-associated Mbt substrate, was also undisturbed throughout the cell cycle. Mbt controls the apical enrichment of Cno, another actin-associated protein. Moreover, Mbt influences neuroblast cell size, proliferation potential and survival. mbtP1 neuroblasts were smaller than wildtype neuroblasts and showed reduced proliferation activity and survival. However, the apoptotic loss of mbtP1 neuroblasts is a secondary effect. Thus, the adult mushroom body phenotype cannot be rescued by blocking apoptosis. Signalling pathways known to regulate growth and proliferation were analyzed with respect to a possible participation of Mbt. mbtP1 induced slight effects in the insulin pathway and strongly influenced the localization of an unknown nucleolar protein. Genetic interactions of mbtP1 with mutations in genes involved in the classical MAPK pathway identified mbt as a positive regulator of the MAPK pathway. A similar effect was also observed with respect to neuroblast proliferation and size. A 2D gel analysis of larval brains identified Bic and Hsp83 as candidate proteins, that might be regulated by Mbt. This work characterizes a novel function of the p21-activated kinase Mbt in neural stem cells. It provides starting points for a detailed analysis of the mechanisms of type II PAK functions in the control of cell growth, proliferation and survival
MSC stimulate ovarian tumor growth during intercellular communication but reduce tumorigenicity after fusion with ovarian cancer cells
Abstract The tumor microenvironment enables important cellular interactions between cancer cells and recruited adjacent populations including mesenchymal stroma/stem cells (MSC). In vivo cellular interactions of primary human MSC in co-culture with human SK-OV-3 ovarian cancer cells revealed an increased tumor growth as compared to mono-cultures of the ovarian cancer cells. Moreover, the presence of MSC stimulated formation of liver metastases. Further interactions of MSC with the ovarian cancer cells resulted in the formation of hybrid cells by cell fusion. Isolation and single cell cloning of these hybrid cells revealed two differentially fused ovarian cancer cell populations termed SK-hyb1 and SK-hyb2. RNA microarray analysis demonstrated expression profiles from both parental partners whereby SK-hyb1 were attributed with more SK-OV-3 like properties and SK-hyb2 cells displayed more similarities to MSC. Both ovarian cancer hybrid populations exhibited reduced proliferative capacity compared to the parental SK-OV-3 cells. Moreover, the fused populations failed to develop tumors in NODscid mice. Together, these data suggested certain stimulatory effects on ovarian tumor growth in the presence of MSC. Conversely, fusion of MSC with SK-OV-3 cells contributed to the generation of new cancer hybrid populations displaying a significantly reduced tumorigenicity
Breast Carcinoma: From Initial Tumor Cell Detachment to Settlement at Secondary Sites
Metastasis represents a multistep cascade of cancer cell alterations accompanied by structural and functional changes within the tumor microenvironment which may involve the induction of a retrodifferentiation program. Major steps in metastatic developments include (A) cell detachment from the primary tumor site involving epithelial-mesenchymal transition (EMT), (B) migration and invasion into surrounding tissue, (C) transendothelial intravasation into the vasculature of blood and/or lymphatic vessels as circulating tumor cells (CTCs), (D) dissemination to distant organs, and (E) extravasation of CTCs to secondary sites as disseminated tumor cells (DTCs). This article highlights some aspects of the metastatic cascade with a focus on breast cancer cells. Metastatic steps critically depend on the capability of cancer cells to adapt to distant tissues and the corresponding new microenvironment. As a consequence, increasing plasticity and developmental changes paralleled by acquisition of new cancer cell functionalities challenge a successful therapeutic approach
In Vivo Cell Fusion between Mesenchymal Stroma/Stem-Like Cells and Breast Cancer Cells
Cellular communication within the tumor microenvironment enables important interactions between cancer cells and recruited adjacent populations including mesenchymal stroma/stem-like cells (MSC). These interactions were monitored in vivo following co-injection of GFP-labeled human MSC together with mcherry-labeled MDA-MB-231 breast cancer cells in NODscid mice. Within 14 days of tumor development the number of initially co-injected MSC had significantly declined and spontaneous formation of breast cancer/MSC hybrid cells was observed by the appearance of double fluorescing cells. This in vivo fusion displayed a rare event and occurred in less than 0.5% of the tumor cell population. Similar findings were observed in a parallel in vitro co-culture. Characterization of the new cell fusion products obtained after two consecutive flow cytometry cell sorting and single cell cloning revealed two populations, termed MDA-hyb3 and MDA-hyb4. The breast cancer fusion cells expressed both, GFP and mcherry and displayed more characteristics of the MDA-MB-231 cells than of the parental MSC. While little if any differences were determined in the proliferative capacity, a significant delay of MDA-hyb3 cells in tumor formation was observed when compared to the parental MDA-MB-231 cells. Moreover, MDA-hyb3 cells developed an altered pattern of distant organ metastases. These findings demonstrated dynamic tumor changes by in vivo and in vitro fusion with the development of new breast cancer hybrid cells carrying altered tumorigenic properties. Consequently, cancer cell fusion contributes to progressively increasing tumor heterogeneity which complicates a therapeutic regimen