1,928 research outputs found

    t(8;13)(p12;q12) in an atypical chronic myeloid leukaemia case

    Get PDF
    Case report of a translocation : t(8;13)(p12;q12) in an atypical chronic myeloid leukaemia case

    A case of myeloproliferative disorder with t(5;10)(q33;q21.2)

    Get PDF
    Case report of a translocation : A case of myeloproliferative disorder with t(5;10)(q33;q21.2)

    mTOR pathway in papillary thyroid carcinoma: Different contributions of mTORC1 and mTORC2 complexes for tumor behavior and SLC5A5 mRNA expression

    Get PDF
    The mammalian target of rapamycin (mTOR) pathway is overactivated in thyroid cancer (TC). We previously demonstrated that phospho-mTOR expression is associated with tumor aggressiveness, therapy resistance, and lower mRNA expression of SLC5A5 in papillary thyroid carcinoma (PTC), while phospho-S6 (mTORC1 effector) expression was associated with less aggressive clinicopathological features. The distinct behavior of the two markers led us to hypothesize that mTOR activation may be contributing to a preferential activation of the mTORC2 complex. To approach this question, we performed immunohistochemistry for phospho-AKT Ser473 (mTORC2 effector) in a series of 182 PTCs previously characterized for phospho-mTOR and phospho-S6 expression. We evaluated the impact of each mTOR complex on SLC5A5 mRNA expression by treating cell lines with RAD001 (mTORC1 blocker) and Torin2 (mTORC1 and mTORC2 blocker). Phospho-AKT Ser473 expression was positively correlated with phospho-mTOR expression. Nuclear expression of phospho-AKT Ser473 was significantly associated with the presence of distant metastases. Treatment of cell lines with RAD001 did not increase SLC5A5 mRNA levels, whereas Torin2 caused a ~6 fold increase in SLC5A5 mRNA expression in the TPC1 cell line. In PTC, phospho-mTOR activation may lead to the activation of the mTORC2 complex. Its downstream effector, phospho-AKT Ser473, may be implicated in distant metastization, therapy resistance, and downregulation of SLC5A5 mRNA expression.Acknowledgments: This study was supported by FCT (“Portuguese Foundation for Science and Technology”) through PhD grants to Catarina Tavares (SFRH/BD/87887/2012), Ana Pestana (SFRH/BD/110617/2015), and Rui Batista (SFRH/BD/111321/2015) and by a CNPq PhD grant (“National Counsel of Technological and Scientific Development”, Brazil), Science without Borders, Process n# 237322/2012-9 for Luciana Ferreira. Miguel Melo received a grant from Genzyme for the research project “Molecular biomarkers of prognosis and response to therapy in differentiated thyroid carcinomas”. Further funding was obtained from FEDER—Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020—Operational Program for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT—Fundação para a Ciência e a Tecnologia/Ministério da Ciência, Tecnologia e Inovação in the framework of the project "Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274), and by the project “Advancing cancer research: from basic acknowledgement to application”; NORTE-01-0145-FEDER-000029; “Projetos Estruturados de I&D&I, funded by Norte 2020-Programa Operacional Regional do Norte. This work was also financed by Sociedade Portuguesa de Endocrinologia Diabetes e Metabolismo through a grant “Prof. E. Limbert Sociedade Portuguesa de Endocrinologia Diabetes e Metabolismo/Sanofi-Genzyme in thyroid pathology”

    Peroxisomal APX knockdown triggers antioxidant mechanisms favourable for coping with high photorespiratory H2O2 induced by CAT deficiency in rice

    Get PDF
    The physiological role of peroxisomal ascorbate peroxidases (pAPX) is unknown; therefore, we utilized pAPX4 knockdown rice and catalase (CAT) inhibition to assess its role in CAT compensation under high photorespiration. pAPX4 knockdown induced co-suppression in the expression of pAPX3. The rice mutants exhibited metabolic changes such as lower CAT and glycolate oxidase (GO) activities and reduced glyoxylate content; however, APX activity was not altered. CAT inhibition triggered different changes in the expression of CAT, APX and glutathione peroxidase (GPX) isoforms between non-transformed (NT) and silenced plants. These responses were associated with alterations in APX, GPX and GO activities, suggesting redox homeostasis differences. The glutathione oxidation-reduction states were modulated differently in mutants, and the ascorbate redox state was greatly affected in both genotypes. The pAPX suffered less oxidative stress and photosystem II (PSII) damage and displayed higher photosynthesis than the NT plants. The improved acclimation exhibited by the pAPX plants was indicated by lower H2O2 accumulation, which was associated with lower GO activity and glyoxylate content. The suppression of both pAPXs and/or its downstream metabolic and molecular effects may trigger favourable antioxidant and compensatory mechanisms to cope with CAT deficiency. This physiological acclimation may involve signalling by peroxisomal H2O2, which minimized the photorespiration.</p

    NIS expression in thyroid tumors, relation with prognosis clinicopathological and molecular features

    Get PDF
    Thyroid cancer therapy is based on surgery followed by radioiodine treatment. The incorporation of radioiodine by cancer cells is mediated by sodium iodide symporter (NIS) (codified by the SLC5A5 gene), that is functional only when targeted to the cell membrane. We aimed to evaluate if NIS expression in thyroid primary tumors would be helpful in predicting tumor behavior, response to therapy and prognosis. NIS expression was addressed by qPCR and immunohistochemistry. In order to validate our data, we also studied SLC5A5 expression on 378 primary papillary thyroid carcinomas from The Cancer Genome Atlas (TCGA) database. In our series, SLC5A5 expression was lower in carcinomas with vascular invasion and with extrathyroidal extension and in those harboring BRAFV600E mutation. Analysis of SLC5A5 expression from TCGA database confirmed our results. Furthermore, it showed that larger tumors, with locoregional recurrences and/or distant metastases or harboring RAS, BRAF and/or TERT promoter (TERTp) mutations presented significantly less SLC5A5 expression. Regarding immunohistochemistry, 12/211 of the cases demonstrated NIS in the membrane of tumor cells, those cases showed variable outcomes concerning therapy success, prognosis and all but one were wild type for BRAF, NRAS and TERTp mutations. SLC5A5 mRNA lower expression is associated with features of aggressiveness and with key genetic alterations involving BRAF, RAS and TERTp. Mutations in these genes seem to decrease protein expression and its targeting to the cell membrane. SLC5A5 mRNA expression is more informative than NIS immunohistochemical expression regarding tumor aggressiveness and prognostic features.This study was supported by FCT (‘Portuguese Foundation for Science and Technology’) through PhD grants to Catarina Tavares (SFRH/BD/87887/2012), Ana Pestana (SFRH/BD/110617/2015), Rui Batista (SFRH/BD/111321/2015) and by a CNPq PhD grant (‘National Counsel of Technological and Scientific Development’, Brazil), Science without Borders, Process n# 237322/2012-9 for Luciana Ferreira. Miguel Melo received a grant from Genzyme for the research project ‘Molecular biomarkers of prognosis and response to therapy in differentiated thyroid carcinomas’. Further funding was obtained from FEDER – Fundo Europeu de Desenvolvimento Regional funds through the COMPETE 2020 – Operational Program for Competitiveness and Internationalization (POCI), Portugal 2020, and by Portuguese funds through FCT – Fundação para a Ciência e a Tecnologia/ Ministério da Ciência, Tecnologia e Inovação in the framework of the project ‘Institute for Research and Innovation in Health Sciences’ (POCI-01-0145-FEDER-007274) and by the project ‘Advancing cancer research: from basic knowledgement to application’; NORTE-01-0145-FEDER-000029; ‘Projetos Estruturados de I&D&I’, funded by Norte 2020-Programa Operacional Regional do Norte. This work was also financed by Sociedade Portuguesa de Endocrinologia Diabetes e Metabolismo through a grant ‘Prof. E Limbert Sociedade Portuguesa de Endocrinologia Diabetes e Metabolismo/Sanofi-Genzyme in thyroid pathology’

    Mechanisms of leukocyte lipid body formation and function in inflammation

    Full text link
    An area of increasingly interest for the understanding of cell signaling are the spatio-temporal aspects of the different enzymes involved in lipid mediator generation (eicosanoid-forming enzymes, phospholipases and their regulatory kinases and phosphatases) and pools of lipid precursors. The compartmentalization of signaling components within discrete and dynamic sites in the cell is critical for specificity and efficiency of enzymatic reactions of phosphorilation, enzyme activation and function. We hypothesized that lipid bodies - inducible non-membrane bound cytoplasmic lipid domains - function as specialized intracellular sites of compartmentalization of signaling with major roles in lipid mediator formation within leukocytes engaged in inflammatory process. Over the past years substantial progresses have been made demonstrating that all enzymes involved in eicosanoid synthesis localize at lipid bodies and lipid bodies are distinct sites for eicosanoid generation. Here we will review our current knowledge on the mechanisms of formation and functions of lipid bodies pertinent to inflammation

    Determinant representations of scalar products for the open XXZ chain with non-diagonal boundary terms

    Full text link
    With the help of the F-basis provided by the Drinfeld twist or factorizing F-matrix for the open XXZ spin chain with non-diagonal boundary terms, we obtain the determinant representations of the scalar products of Bethe states of the model.Comment: Latex file, 28 pages, based on the talk given by W. -L. Yang at Statphys 24, Cairns, Australia, 19-23 July, 201

    Carvacrol, a Food-Additive, Provides Neuroprotection on Focal Cerebral Ischemia/Reperfusion Injury in Mice

    Get PDF
    Carvacrol (CAR), a naturally occurring monoterpenic phenol and food additive, has been shown to have antimicrobials, antitumor, and antidepressant-like activities. A previous study demonstrated that CAR has the ability to protect liver against ischemia/reperfusion injury in rats. In this study, we investigated the protective effects of CAR on cerebral ischemia/reperfusion injury in a middle cerebral artery occlusion mouse model. We found that CAR (50 mg/kg) significantly reduced infarct volume and improved neurological deficits after 75 min of ischemia and 24 h of reperfusion. This neuroprotection was in a dose-dependent manner. Post-treatment with CAR still provided protection on infarct volume when it was administered intraperitoneally at 2 h after reperfusion; however, intracerebroventricular post-treatment reduced infarct volume even when the mice were treated with CAR at 6 h after reperfusion. These findings indicated that CAR has an extended therapeutic window, but delivery strategies may affect the protective effects of CAR. Further, we found that CAR significantly decreased the level of cleaved caspase-3, a marker of apoptosis, suggesting the anti-apoptotic activity of CAR. Finally, our data indicated that CAR treatment increased the level of phosphorylated Akt and the neuroprotection of CAR was reversed by a PI3K inhibitor LY-294002, demonstrating the involvement of the PI3K/Akt pathway in the anti-apoptotic mechanisms of CAR. Due to its safety and wide use in the food industry, CAR is a promising agent to be translated into clinical trials
    corecore