264 research outputs found

    Use of electrochemical impedance spectroscopy to assess the stability of the anion exchange membrane MA-41, modified by poly-N,N-diallylmorpholine bromide in overlimiting current modes

    Get PDF
    The paper presents the results of studying the electrochemical characteristics and long-term stability of MA-41 membranes on the surface of which poly-N,N-diallylmorpholinium bromide was applied. The deposition of a polyelectrolyte on the membrane surface leads to an increase in the limiting current from 0.8 to 1.1 mA/cm2. The comparison of the experimental and theoretically calculated values of the limiting current density allows us to conclude that the modification of the membrane surface by poly-N,N-diallylmorpholinium bromide does not lead to the formation of a continuous polyelectrolyte film on the surface, but its fixation occurs due to the sorption of macromolecules on the surface of the ion-exchanger particles. To quantify the rate of the water dissociation reaction at the membrane/solution interface, the method of electrochemical impedance was used, which makes it possible to compare the rate constants of the water dissociation reaction for different membranes, assuming that the reaction is described by the Gericher impedance. It is shown that modification of the MA-41 membrane surface leads to a decrease in the rate of the water dissociation reaction in the current range i = 1.5–4ilim by a factor of 2–6. The reduction in water dissociation reaction rate is attributed to the substitution of catalytically active secondary and tertiary amino groups in the surface layer of the pristine membrane by stable heterocyclic ammonium bases of poly-N,N-diallylmorpholinium. The study of the long-term stability of the resulting membrane showed that when the membrane is polarized with a current equal to  twice the limiting current, the desorption of the modifier occurs within 25 h, and the properties of the membrane become close to those of the unmodified MA-41 membrane. It was shown that the electrochemical impedance method can be used as a very sensitive method for studying the long-term stability of ion-exchange membranes

    Biological Impact of γ-Fe2O3 Magnetic Nanoparticles Obtained by Laser Target Evaporation: Focus on Magnetic Biosensor Applications

    Get PDF
    The biological activity of γ-Fe2O3 magnetic nanoparticles (MNPs), obtained by the laser target evaporation technique, was studied, with a focus on their possible use in biosensor applications. The biological effect of the MNPs was investigated in vitro on the primary cultures of human dermal fibroblasts. The effects of the MNPs contained in culture medium or MNPs already uptaken by cells were evaluated for the cases of the fibroblast’s proliferation and secretion of cytokines and collagen. For the tests related to the contribution of the constant magnetic field to the biological activity of MNPs, a magnetic system for the creation of the external magnetic field (having no commercial analogues) was designed, calibrated, and used. It was adapted to the size of standard 24-well cell culture plates. At low concentrations of MNPs, uptake by fibroblasts had stimulated their proliferation. Extracellular MNPs stimulated the release of pro-inflammatory cytokines (Interleukin-6 (IL-6) and Interleukin-8 (IL-8) or chemokine (C-X-C motif) ligand 8 (CXCL8)) in a concentration-dependent manner. However, the presence of MNPs did not increase the collagen secretion. The exposure to the uniform constant magnetic field (H ≈ 630 or 320 Oe), oriented in the plane of the well, did not cause considerable changes in fibroblasts proliferation and secretion, regardless of presence of MNPs. Statistically significant differences were detected only in the levels of IL-8/CXCL8 release.The study was supported by the program of the Ministry of Health of the Russian Federation (project 121032300335-1). This work was financially supported, in part, by the Ministry of Science and Higher Education of the RF (grant FEUZ-2020-0051) (G.Yu. Melnikov) and University of the Basque Country Research Groups Funding (grant IT1245-19) (G.V. Kurlyandskaya)

    Mechanical, Electrical and Magnetic Properties of Ferrogels with Embedded Iron Oxide Nanoparticles Obtained by Laser Target Evaporation: Focus on Multifunctional Biosensor Applications

    Get PDF
    Hydrogels are biomimetic materials widely used in the area of biomedical engineering and biosensing. Ferrogels (FG) are magnetic composites capable of functioning as magnetic field sensitive transformers and field assisted drug deliverers. FG can be prepared by incorporating magnetic nanoparticles (MNPs) into chemically crosslinked hydrogels. The properties of biomimetic ferrogels for multifunctional biosensor applications can be set up by synthesis. The properties of these biomimetic ferrogels can be thoroughly controlled in a physical experiment environment which is much less demanding than biotests. Two series of ferrogels (soft and dense) based on polyacrylamide (PAAm) with different chemical network densities were synthesized by free-radical polymerization in aqueous solution with N, N'-methylene-diacrylamide as a cross-linker and maghemite Fe2O3 MNPs fabricated by laser target evaporation as a filler. Their mechanical, electrical and magnetic properties were comparatively analyzed. We developed a giant magnetoimpedance (MI) sensor prototype with multilayered FeNi-based sensitive elements deposited onto glass or polymer substrates adapted for FG studies. The MI measurements in the initial state and in the presence of FG with different concentrations of MNPs at a frequency range of 1-300 MHz allowed a precise characterization of the stray fields of the MNPs present in the FG. We proposed an electrodynamic model to describe the MI in multilayered film with a FG layer based on the solution of linearized Maxwell equations for the electromagnetic fields coupled with the Landau-Lifshitz equation for the magnetization dynamics.This work was supported in part within the framework of the state task of the Ministry of Education and Science of Russia 3.6121.2017/8.9; RFBR grants 16-08-00609-a, 18-08-00178, and by the ACTIMAT ELKARTEK grant of the Basque Country Government. Selected studies were made at SGIKER Common Services of UPV-EHU and URFU Common Services. We thank I.V. Beketov, A.A. Chlenova, S.O. Volchkov, V.N. Lepalovskij, A.M. Murzakaev and A.A. Svalova for special support

    The b quark low-scale running mass from Upsilon sum rules

    Full text link
    The b quark low-scale running mass m_kin is determined from an analysis of the Upsilon sum rules in the next-to-next-to-leading order (NNLO). It is demonstrated that using this mass one can significantly improve the convergence of the perturbation series for the spectral density moments. We obtain m_kin(1 GeV) = 4.56 \pm 0.06 GeV. Using this result we derive the value of the MS-bar mass m: m(m) = 4.20 \pm 0.1 GeV. Contrary to the low-scale running mass, the pole mass of the b quark cannot be reliably determined from the sum rules. As a byproduct of our study we find the NNLO analytical expression for the cross section e+e- --> Q\bar Q of the quark antiquark pair production in the threshold region, as well as the energy levels and the wave functions at the origin for the ^1S_3 bound states of Q\bar Q.Comment: 22 pages, Late

    Новые комбинации и названия сосудистых растений Азиатской России.

    Get PDF
    In this paper, we present nomenclatural novelties required in the course of the preparation of the second, revised version of the checklist of vascular plants of Asian Russia. The first version was published in 2012 (Baikov 2012). At the family level, we accepted the modern classification systems (APG IV for flowering plants, PPG I for lycophytes and ferns, and GPG for gymnosperms). At the genus level, we follow the generic concepts applied for particular taxonomic groups according to the Catalogue of Life (COL; https://www.catalogueoflife.org/), version COL23.5. At the species level, we consistently apply the monotypic species concept (also known in Russia as Komarov’s concept). In total, this paper presents one new nothogenus name (× Sibirotrisetokoeleria Chepinoga nom. nov., Poaceae) and 156 new names in the rank of species, in 28 families: Amaranthaceae Juss. (1 name), Amaryllidaceae J. St.-Hil. (1), Apiaceae Lindl. (2), Asteraceae Bercht. & J.Presl (12), Boraginaceae Juss. (4), Caryophyllaceae Juss. (11), Crassulaceae J. St.-Hill. (3), Cyperaceae Juss. (8), Ericaceae Juss. (2), Fabaceae Lindl. (16), Gentianaceae Juss. (1), Geraniaceae Juss. (1), Juncaceae Juss. (1), Lamiaceae Martinov (1), Menyanthaceae Dumort. (1), Orchidaceae Juss. (1), Orobanchaceae Vent. (1), Papaveraceae Juss. (4), Plantaginaceae Juss. (1), Poaceae Barnhart (49), Polygonaceae Juss. (4), Primulaceae Batsch. ex Borkh. (6), Ranunculaceae Juss. (4), Rosaceae Juss. (5), Salicaceae Mirb. (2), Saxifragaceae Juss. (11), Vitaceae Juss. (1), Zygophyllaceae R. Br. (2 names)

    Electrode Strip Deposition for the CMS Barrel Drift Tube System

    Get PDF
    The full production ideation, design, set up and realization of the Electrode Strip Deposition for the entire construction of the CMS Barrel Drift Tube System are described in detail

    NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels

    Get PDF
    This is a second paper in our ongoing calculation of the next-to-next-to-leading order (NNLO) QCD correction to the total inclusive top-pair production cross-section at hadron colliders. In this paper we calculate the reaction qqˉttˉ+qqˉq\bar q \to t\bar t + q\bar q which was not considered in our previous work on qqˉttˉ+Xq\bar q \to t\bar t +X due to its phenomenologically negligible size. We also calculate all remaining fermion-pair-initiated partonic channels qq,qqˉqq', q\bar q' and qqqq that contribute to top-pair production starting from NNLO. The contributions of these reactions to the total cross-section for top-pair production at the Tevatron and LHC are small, at the permil level. The most interesting feature of these reactions is their characteristic logarithmic rise in the high energy limit. We compute the constant term in the leading power behavior in this limit, and achieve precision that is an order of magnitude better than the precision of a recent theoretical prediction for this constant. All four partonic reactions computed in this paper are included in our numerical program Top++. The calculation of the NNLO corrections to the two remaining partonic reactions, qgttˉ+Xqg\to t\bar t+X and ggttˉ+Xgg\to t\bar t+X, is ongoing.Comment: 1+16 pages; 3 figure

    Supersymmetric non-linear sigma-models with boundaries revisited

    Full text link
    We study two-dimensional supersymmetric non-linear sigma-models with boundaries. We derive the most general family of boundary conditions in the non-supersymmetric case. Next we show that no further conditions arise when passing to the N=1 model. We present a manifest N=1 off-shell formulation. The analysis is greatly simplified compared to previous studies and there is no need to introduce non-local superspaces nor to go (partially) on-shell. Whether or not torsion is present does not modify the discussion. Subsequently, we determine under which conditions a second supersymmetry exists. As for the case without boundaries, two covariantly constant complex structures are needed. However, because of the presence of the boundary, one gets expressed in terms of the other one and the remainder of the geometric data. Finally we recast some of our results in N=2 superspace and discuss applications.Comment: LaTeX, 23 page

    alpha^2 corrections to parapositronium decay: a detailed description

    Full text link
    We present details of our recent calculation of alpha^2 corrections to the parapositronium decay into two photons. These corrections are rather small and our final result for the parapositronium lifetime agrees well with the most recent measurement. Implications for orthopositronium decays are briefly discussed.Comment: 18 pages, late
    corecore