3,739 research outputs found

    Selective transmission of Dirac electrons and ballistic magnetoresistance of \textit{n-p} junctions in graphene

    Get PDF
    We show that an electrostatically created n-p junction separating the electron and hole gas regions in a graphene monolayer transmits only those quasiparticles that approach it almost perpendicularly to the n-p interface. Such a selective transmission of carriers by a single n-p junction would manifest itself in non-local magnetoresistance effect in arrays of such junctions and determines the unusual Fano factor in the current noise universal for the n-p junctions in graphene.Comment: 4 pages, 2 fig

    Two mesoscopic models of two interacting electrons

    Full text link
    We study two simple mesoscopic models of interacting two electrons; first one consists of two quantum coherent parallel conductors with long-range Coulomb interaction in some localized region and the other is of an interacting quantum dot (QD) side-coupled to a noninteracting quantum wire. We evaluate exact two-particle scattering matrix as well as two-particle current which are relevant in a two-particle scattering experiment in these models. Finally we show that the on-site repulsive interaction in the QD filters out the spin-singlet two-electron state from the mixed two-electron input states in the side-coupled QD model.Comment: 8 pages, 5 figures, revised version, to appear in Phys. Rev.

    Temperature- and quantum phonon effects on Holstein-Hubbard bipolarons

    Full text link
    The one-dimensional Holstein-Hubbard model with two electrons of opposite spin is studied using an extension of a recently developed quantum Monte Carlo method, and a very simple yet rewarding variational approach, both based on a canonically transformed Hamiltonian. The quantum Monte Carlo method yields very accurate results in the regime of small but finite phonon frequencies, characteristic of many strongly correlated materials such as, e.g., the cuprates and the manganites. The influence of electron-electron repulsion, phonon frequency and temperature on the bipolaron state is investigated. Thermal dissociation of the intersite bipolaron is observed at high temperatures, and its relation to an existing theory of the manganites is discussed.Comment: 12 pages, 7 figures; final version, accepted for publication in Phys. Rev.

    Statistics of transmission in one-dimensional disordered systems: universal characteristics of states in the fluctuation tails

    Get PDF
    We numerically study the distribution function of the conductance (transmission) in the one-dimensional tight-binding Anderson and periodic-on-average superlattice models in the region of fluctuation states where single parameter scaling is not valid. We show that the scaling properties of the distribution function depend upon the relation between the system's length LL and the length lsl_s determined by the integral density of states. For long enough systems, LlsL \gg l_s, the distribution can still be described within a new scaling approach based upon the ratio of the localization length llocl_{loc} and lsl_s. In an intermediate interval of the system's length LL, llocLlsl_{loc}\ll L\ll l_s, the variance of the Lyapunov exponent does not follow the predictions of the central limit theorem and this scaling becomes invalid.Comment: 22 pages, 12 eps figure

    Generalized Lyapunov Exponent and Transmission Statistics in One-dimensional Gaussian Correlated Potentials

    Full text link
    Distribution of the transmission coefficient T of a long system with a correlated Gaussian disorder is studied analytically and numerically in terms of the generalized Lyapunov exponent (LE) and the cumulants of lnT. The effect of the disorder correlations on these quantities is considered in weak, moderate and strong disorder for different models of correlation. Scaling relations between the cumulants of lnT are obtained. The cumulants are treated analytically within the semiclassical approximation in strong disorder, and numerically for an arbitrary strength of the disorder. A small correlation scale approximation is developed for calculation of the generalized LE in a general correlated disorder. An essential effect of the disorder correlations on the transmission statistics is found. In particular, obtained relations between the cumulants and between them and the generalized LE show that, beyond weak disorder, transmission fluctuations and deviation of their distribution from the log-normal form (in a long but finite system) are greatly enhanced due to the disorder correlations. Parametric dependence of these effects upon the correlation scale is presented.Comment: 18 pages, 11 figure

    Nonrelativistic Quantum Analysis of the Charged Particle-Dyon System on a Conical Spacetime

    Full text link
    In this paper we develop the nonrelativistic quantum analysis of the charged particle-dyon system in the spacetime produced by an idealized cosmic string. In order to do that, we assume that the dyon is superposed to the cosmic string. Considering this peculiar configuration {\it conical} monopole harmonics are constructed, which are a generalizations of previous monopole harmonics obtained by Wu and Yang(1976 {\it Nucl. Phys. B} {\bf 107} 365) defined on a conical three-geometry. Bound and scattering wave functions are explicitly derived. As to bound states, we present the energy spectrum of the system, and analyze how the presence of the topological defect modifies obtained result. We also analyze this system admitting the presence of an extra isotropic harmonic potential acting on the particle. We show that the presence of this potential produces significant changes in the energy spectrum of the system.Comment: Paper accepted for publication in Classical and Quantum Gravit

    Phase transitions in simplified models with long-range interactions

    Full text link
    We study the origin of phase transitions in some simplified models with long range interactions. For the ring model, we show that a possible new phase transition predicted in a recent paper by Nardini and Casetti from an energy landscape analysis does not occur. Instead of such phase transitions we observe a sharp, although without any non-analiticity, change from a core-halo to an only core configuration in the spatial distribution functions for low energies. By introducing a new class of solvable simplified models without any critical points in the potential energy, we show that a similar behaviour to the ring model is obtained, with a first order phase transition from an almost homogeneous high energy phase to a clustered phase, and the same core-halo to core configuration transition at lower energies. We discuss the origin of these features of the simplified models, and show that the first order phase transition comes from the maximization of the entropy of the system as a function of energy an an order parameter, as previously discussed by Kastner, which seems to be the main mechanism causing phase transitions in long-range interacting systems

    Theory of the Diamagnetism Above the Critical Temperature for Cuprates

    Full text link
    Recently experiments on high critical temperature superconductors has shown that the doping levels and the superconducting gap are usually not uniform properties but strongly dependent on their positions inside a given sample. Local superconducting regions develop at the pseudogap temperature (TT^*) and upon cooling, grow continuously. As one of the consequences a large diamagnetic signal above the critical temperature (TcT_c) has been measured by different groups. Here we apply a critical-state model for the magnetic response to the local superconducting domains between TT^* and TcT_c and show that the resulting diamagnetic signal is in agreement with the experimental results.Comment: published versio

    Policy and Institutional Support for CA Development (Examples from Europe, Africa, Asia)

    Get PDF
    Policy and Institutional Support for CA Development (Examples from Europe, Africa, Asia

    Random-Matrix Theory of Electron Transport in Disordered Wires with Symplectic Symmetry

    Full text link
    The conductance of disordered wires with symplectic symmetry is studied by a random-matrix approach. It has been believed that Anderson localization inevitably arises in ordinary disordered wires. A counterexample is recently found in the systems with symplectic symmetry, where one perfectly conducting channel is present even in the long-wire limit when the number of conducting channels is odd. This indicates that the odd-channel case is essentially different from the ordinary even-channel case. To study such differences, we derive the DMPK equation for transmission eigenvalues for both the even- and odd- channel cases. The behavior of dimensionless conductance is investigated on the basis of the resulting equation. In the short-wire regime, we find that the weak-antilocalization correction to the conductance in the odd-channel case is equivalent to that in the even-channel case. We also find that the variance does not depend on whether the number of channels is even or odd. In the long-wire regime, it is shown that the dimensionless conductance in the even-channel case decays exponentially as --> 0 with increasing system length, while --> 1 in the odd-channel case. We evaluate the decay length for the even- and odd-channel cases and find a clear even-odd difference. These results indicate that the perfectly conducting channel induces clear even-odd differences in the long-wire regime.Comment: 28pages, 5figures, Accepted for publication in J. Phys. Soc. Jp
    corecore