55 research outputs found

    Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seagliderâ„¢

    Get PDF
    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many endangered marine mammal species

    Long-term passive acoustic recordings track the changing distribution of North Atlantic right whales (Eubalaena glacialis) from 2004 to 2014

    Get PDF
    © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Scientific Reports 7 (2017): 13460, doi:10.1038/s41598-017-13359-3.Given new distribution patterns of the endangered North Atlantic right whale (NARW; Eubalaena glacialis) population in recent years, an improved understanding of spatio-temporal movements are imperative for the conservation of this species. While so far visual data have provided most information on NARW movements, passive acoustic monitoring (PAM) was used in this study in order to better capture year-round NARW presence. This project used PAM data from 2004 to 2014 collected by 19 organizations throughout the western North Atlantic Ocean. Overall, data from 324 recorders (35,600 days) were processed and analyzed using a classification and detection system. Results highlight almost year-round habitat use of the western North Atlantic Ocean, with a decrease in detections in waters off Cape Hatteras, North Carolina in summer and fall. Data collected post 2010 showed an increased NARW presence in the mid-Atlantic region and a simultaneous decrease in the northern Gulf of Maine. In addition, NARWs were widely distributed across most regions throughout winter months. This study demonstrates that a large-scale analysis of PAM data provides significant value to understanding and tracking shifts in large whale movements over long time scales.This research was funded and supported by many organizations, specified by projects as follows: Data recordings from region 1 were provided by K. Stafford and this research effort was funded by the National Science Foundation #NSF-ARC 0532611. Region 2 data were provided by D. K. Mellinger and S. Nieukirk, funded by National Oceanic and Atmospheric Agency (NOAA) and the Office of Naval Research (ONR) #N00014–03–1–0099, NOAA #NA06OAR4600100, US Navy #N00244-08-1-0029, N00244-09-1-0079, and N00244-10-1-0047

    An Assessment of the Effectiveness of High Definition Cameras as Remote Monitoring Tools for Dolphin Ecology Studies.

    Get PDF
    Research involving marine mammals often requires costly field programs. This paper assessed whether the benefits of using cameras outweighs the implications of having personnel performing marine mammal detection in the field. The efficacy of video and still cameras to detect Indo-Pacific bottlenose dolphins (Tursiops aduncus) in the Fremantle Harbour (Western Australia) was evaluated, with consideration on how environmental conditions affect detectability. The cameras were set on a tower in the Fremantle Port channel and videos were perused at 1.75 times the normal speed. Images from the cameras were used to estimate position of dolphins at the water’s surface. Dolphin detections ranged from 5.6 m to 463.3 m for the video camera, and from 10.8 m to 347.8 m for the still camera. Detection range showed to be satisfactory when compared to distances at which dolphins would be detected by field observers. The relative effect of environmental conditions on detectability was considered by fitting a Generalised Estimation Equations (GEEs) model with Beaufort, level of glare and their interactions as predictors and a temporal auto-correlation structure. The best fit model indicated level of glare had an effect, with more intense periods of glare corresponding to lower occurrences of observed dolphins. However this effect was not large (-0.264) and the parameter estimate was associated with a large standard error (0.113).The limited field of view was the main restraint in that cameras can be only applied to detections of animals observed rather than counts of individuals. However, the use of cameras was effective for long term monitoring of occurrence of dolphins, outweighing the costs and reducing the health and safety risks to field personal. This study showed that cameras could be effectively implemented onshore for research such as studying changes in habitat use in response to development and construction activities

    High source levels and small active space of high-pitched song in bowhead whales (Balaena mysticetus)

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Public Library of Science, doi:10.1371/journal.pone.0052072.The low-frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally powerful, but more complex broadband vocalizations composed of higher frequencies that suffer from higher attenuation. Here we evaluate the active space of high frequency song notes of bowhead whales (Balaena mysticetus) in Western Greenland using measurements of song source levels and ambient noise. Four independent, GPS-synchronized hydrophones were deployed through holes in the ice to localize vocalizing bowhead whales, estimate source levels and measure ambient noise. The song had a mean apparent source level of 185±2 dB rms re 1 µPa @ 1 m and a high mean centroid frequency of 444±48 Hz. Using measured ambient noise levels in the area and Arctic sound spreading models, the estimated active space of these song notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through mating aggregations that co-evolved with broadband song to form a complex and dynamic acoustically mediated sexual display.This work was funded by the Oticon Foundation (grant # 08-3469 to Arctic Station, OT). OT and MC were additionally funded by AP Møller og Hustru Chastine Mc-Kinney Møllers Fond til almene Formaal, MS by a PhD scholarship from the Oticon Foundation, FHJ by a Danish Council for Independent Research, Natural Sciences post-doctoral grant, SEP by a grant from the U.S. Office of Naval Research, and PTM by frame grants from the Danish Natural Science Research Council

    Identification of Clinically Relevant Protein Targets in Prostate Cancer with 2D-DIGE Coupled Mass Spectrometry and Systems Biology Network Platform

    Get PDF
    Prostate cancer (PCa) is the most common type of cancer found in men and among the leading causes of cancer death in the western world. In the present study, we compared the individual protein expression patterns from histologically characterized PCa and the surrounding benign tissue obtained by manual micro dissection using highly sensitive two-dimensional differential gel electrophoresis (2D-DIGE) coupled with mass spectrometry. Proteomic data revealed 118 protein spots to be differentially expressed in cancer (n = 24) compared to benign (n = 21) prostate tissue. These spots were analysed by MALDI-TOF-MS/MS and 79 different proteins were identified. Using principal component analysis we could clearly separate tumor and normal tissue and two distinct tumor groups based on the protein expression pattern. By using a systems biology approach, we could map many of these proteins both into major pathways involved in PCa progression as well as into a group of potential diagnostic and/or prognostic markers. Due to complexity of the highly interconnected shortest pathway network, the functional sub networks revealed some of the potential candidate biomarker proteins for further validation. By using a systems biology approach, our study revealed novel proteins and molecular networks with altered expression in PCa. Further functional validation of individual proteins is ongoing and might provide new insights in PCa progression potentially leading to the design of novel diagnostic and therapeutic strategies

    Developing Literacy Learning Model Based on Multi Literacy, Integrated, and Differentiated Concept at Primary School

    Get PDF
    The main issue addressed in this research is the low writing skills of primary school students. One of the reasons for this condition is that the existing model of writing literacy learning is not appropriate. The purpose of this study is to explain MID-based literacy teaching model and the impact of the model in increasing primary school students\u27 writing skills. This study used combined methods of exploratory type. The samples were elementary school students coming from six schools with three different characteristics. Based on the data analysis, it can be concluded that the implementation of MID-based literacy learning model has proven to signi cantly contribute to the improvement of students\u27 writing skills. Taking place in all sample schools, the improvement may suggest that the model ts not only to students with high- ability but also those with low-ability. Therefore, the MID-based literacy learning model is needed to improve the ability to write various text types appropriately

    Using calls as an indicator for Antarctic blue whale occurrence and distribution across the southwest Pacific and southeast Indian Oceans

    No full text
    Understanding species distribution and behavior is essential for conservation programs of migratory species with recovering populations. The critically endangered Antarctic blue whale (Balaenoptera musculus intermedia) was heavily exploited during the whaling era. Because of their low numbers, highly migratory behavior, and occurrence in remote areas, their distribution and range are not fully understood, particularly in the southwest Pacific Ocean. This is the first Antarctic blue whale study covering the southwest Pacific Ocean region from temperate to tropical waters (32°S to 15°S). Passive acoustic data were recorded between 2010 and 2011 across the southwest Pacific (SWPO) and southeast Indian (SEIO) oceans. We detected Antarctic blue whale calls in previously undocumented SWPO locations off eastern Australia (32°S, 152°E) and within the Lau Basin (20°S, 176°W and 15°S, 173°W), and SEIO off northwest Australia (19°S, 115°E).In temperate waters, adjacent ocean basins had similar seasonal occurrence, in that calling Antarctic blue whales were present for long periods, almost year round in some areas. In northern tropical waters, calling whales were mostly present during the austral winter. Clarifying the occurrence and distribution of critically endangered species is fundamental for monitoring population recovery, marine protected area planning, and in mitigating anthropogenic threats
    • …
    corecore