86 research outputs found

    Decays of polarized top quarks to lepton, neutrino and jets at NLO QCD

    Get PDF
    We compute the differential and total rate of the semileptonic decay of polarized top-quarks tν+bjet+jett\to \ell \nu_\ell + b{\rm jet} + {\rm jet} at next-to-leading order (NLO) in the QCD coupling with an off-shell intermediate WW boson. We present several normalized distributions, in particular those that reflect the tt-spin analyzing powers of the lepton, the b-jet and the W+W^+ boson at LO and NLO QCD.Comment: Latex, 22 page

    An overview of the mid-infrared spectro-interferometer MATISSE: science, concept, and current status

    Full text link
    MATISSE is the second-generation mid-infrared spectrograph and imager for the Very Large Telescope Interferometer (VLTI) at Paranal. This new interferometric instrument will allow significant advances by opening new avenues in various fundamental research fields: studying the planet-forming region of disks around young stellar objects, understanding the surface structures and mass loss phenomena affecting evolved stars, and probing the environments of black holes in active galactic nuclei. As a first breakthrough, MATISSE will enlarge the spectral domain of current optical interferometers by offering the L and M bands in addition to the N band. This will open a wide wavelength domain, ranging from 2.8 to 13 um, exploring angular scales as small as 3 mas (L band) / 10 mas (N band). As a second breakthrough, MATISSE will allow mid-infrared imaging - closure-phase aperture-synthesis imaging - with up to four Unit Telescopes (UT) or Auxiliary Telescopes (AT) of the VLTI. Moreover, MATISSE will offer a spectral resolution range from R ~ 30 to R ~ 5000. Here, we present one of the main science objectives, the study of protoplanetary disks, that has driven the instrument design and motivated several VLTI upgrades (GRA4MAT and NAOMI). We introduce the physical concept of MATISSE including a description of the signal on the detectors and an evaluation of the expected performances. We also discuss the current status of the MATISSE instrument, which is entering its testing phase, and the foreseen schedule for the next two years that will lead to the first light at Paranal.Comment: SPIE Astronomical Telescopes and Instrumentation conference, June 2016, 11 pages, 6 Figure

    ECCD-induced sawtooth crashes at W7-X

    Get PDF
    The optimised superconducting stellarator W7-X generates its rotational transform by means of external coils, therefore no toroidal current is necessary for plasma confinement. Electron cyclotron current drive experiments were conducted for strikeline control and safe divertor operation. During current drive experiments periodic and repetitive crashes of the central electron temperature, similar to sawtooth crashes in tokamaks, were detected. Measurements from soft x-ray tomography and electron cyclotron emission show that the crashes are preceded by weak oscillating precursors and a displacement of the plasma core, consistent with a (m, n)=(1, 1) mode. The displacement occurs within 100μs, followed by expulsion and redistribution of the core into the external part of the plasma. Two types of crashes, with different frequencies and amplitudes are detected in the experimental program. For these non-stationary parameters a strong dependence on the toroidal current is found. A 1-D heuristic model for current diffusion is proposed as a first step to explain the characteristic crash time. Initial results show that the modelled current diffusion timescale is consistent with the initial crash frequency and that the toroidal current rise shifts the position where the instability is triggered, resulting in larger crash amplitudes
    corecore