374 research outputs found

    Power and Propulsion Element (PPE) Spacecraft Reference Trajectory Document

    Get PDF
    This document captures example reference trajectories for the PPE including a reference delivery orbit and orbit maintenance, an example cislunar orbit transfer and end-of-mission (EOM) disposal trajectory. The flexibility of electric propulsion offers, by its low thrust nature, multiple different trajectory options to transfer from one orbit to another. The trajectories captured in this document are representative examples of a low thrust transfer from the NRHO and to multiple cislunar orbits. This document provides a consistent set of data from mission design to be used in the design of the vehicle capable of flying the trajectory described. The data in this document will be used to create conference papers. In order to do so, we are ending this document through for external release

    Analysis of Cislunar Transfers from a Near Rectilinear Halo Orbit with High Power Solar Electric Propulsion

    Get PDF
    As government and commercial interest in the exploration of the Moon and cislu- nar space has grown, Near Rectilinear Halo Orbits (NRHOs) have shown to be of particular interest as staging orbits for human exploration of the Moon. Once in such staging orbits, low thrust solar electric propulsion (SEP) can enable efficient transfer to other orbits in cislunar space. This paper captures ongoing analysis to design efficient transfers of a massive spacecraft from a L2 Southern NRHO to a Distant Retrograde Orbit, L1 Northern NRHO, and Flat L2 Halo Orbit using low thrust SEP. For each transfer type, reference transfer is designed for an assumed 39 t spacecraft with 26.6 kW SEP system. For each reference transfer, analysis is completed to understand the sensitivity of the transfer to changes in initial mass and SEP power and identify the optimal number of thrusters to use for a given combination of mass and power

    Analysis of Near Rectilinear Halo Orbit Insertion with a 40-kW Solar Electric Propulsion System

    Get PDF
    This paper examines low thrust trajectories for delivery of a 40-kW solar electric propulsion spacecraft and potential additional payload to a desired NRHO. One option considered is a trans-lunar injection launch as a co-manifested payload on the Space Launch System. For this option, a reference trajectory is designed and a scan of launch dates is completed to understand the propellant mass sensitivity. A 15-day period cyclical variation in required propellant is observed that is attributed to solar gravity effects. A second option considered is to launch on a smaller commercial launch vehicle to a less energetic elliptical orbit and use SEP to spiral out to NRHO. For this option, analysis is completed to understand the trades between delivered mass to NRHO, total propellant required, time of flight, and solar array degradation. Results show that, while launching to lower altitudes can deliver greater payload mass to NRHO, significant solar array degradation can be observed

    NASA GRC Compass Team Conceptual Point Design and Trades of a Hybrid Solar Electric Propulsion (SEP)/Chemical Propulsion Human Mars Deep Space Transport (DST) Vehicle

    Get PDF
    NASA has long been conducting studies which apply different in-space propulsion technology assumptions to the mission of sending humans to Mars. Two of the technologies under study that are considered to be the most near-term with respect to technology readiness level (TRL) are traditional chemical propulsion systems and high-power Solar Electric Propulsion (SEP) systems. The benefit of relatively low trip times inherent in using impulsive chemical propulsion systems to perform the full round-trip delta V is hampered by the large propellant mass required to perform these burns for human Mars missions. SEP systems offer the benefit of much lower propellant requirements to perform the same round-trip missions, at the cost of longer trip times. Traditionally, impulsive chemical systems are better suited than SEP when used in a gravity well, and SEP systems are more efficient than traditional impulsive systems when used in interplanetary space. A mission to Mars includes both of these scenarios, and thus several NASA architecture studies performed over the last few years have looked to combine the use of both SEP and chemical propulsion systems where they are the most beneficial to human Mars missions. This combined propulsion system concept has been referred to as a SEP/Chem hybrid Mars Transfer Vehicle and is currently shown as the concept Deep Space Transport (DST) in the March 2017 NASA presentation to the National Aerospace Council (NAC)

    Comparison of Solar Electric and Chemical Propulsion Missions

    Get PDF
    Solar Electric Propulsion (SEP) offers fuel efficiency and mission robustness for spacecraft. The combination of solar power and electric propulsion engines is currently used for missions ranging from geostationary stationkeeping to deep space science because of these benefits. Both solar power and electric propulsion technologies have progressed to the point where higher electric power systems can be considered, making substantial cargo missions and potentially human missions viable. This paper evaluates and compares representative lunar, Mars, and Sun-Earth Langrangian point missions using SEP and chemical propulsion subsystems. The potential benefits and limitations are discussed along with technology gaps that need to be resolved for such missions to become possible. The connection to NASA's human architecture and technology development efforts will be discussed

    Interplanetary Mission Design Handbook: Earth-to-Mars Mission Opportunities 2026 to 2045

    Get PDF
    The purpose of this Mission Design Handbook is to provide trajectory designers and mission planners with graphical information about Earth to Mars ballistic trajectory opportunities for the years of 2026 through 2045. The plots, displayed on a departure date/arrival date mission space, show departure energy, right ascension and declination of the launch asymptote, and target planet hyperbolic arrival excess speed, V(sub infinity), for each launch opportunity. Provided in this study are two sets of contour plots for each launch opportunity. The first set of plots shows Earth to Mars ballistic trajectories without the addition of any deep space maneuvers. The second set of plots shows Earth to Mars transfer trajectories with the addition of deep space maneuvers, which further optimize the determined trajectories. The accompanying texts explains the trajectory characteristics, transfers using deep space maneuvers, mission assumptions and a summary of the minimum departure energy for each opportunity

    Low Thrust Cis-Lunar Transfers Using a 40 kW-Class Solar Electric Propulsion Spacecraft

    Get PDF
    This paper captures trajectory analysis of a representative low thrust, high power Solar Electric Propulsion (SEP) vehicle to move a mass around cis-lunar space in the range of 20 to 40 kW power to the Electric Propulsion (EP) system. These cis-lunar transfers depart from a selected Near Rectilinear Halo Orbit (NRHO) and target other cis-lunar orbits. The NRHO cannot be characterized in the classical two-body dynamics more familiar in the human spaceflight community, and the use of low thrust orbit transfers provides unique analysis challenges. Among the target orbit destinations documented in this paper are transfers between a Southern and Northern NRHO, transfers between the NRHO and a Distant Retrograde Orbit (DRO) and a transfer between the NRHO and two different Earth Moon Lagrange Point 2 (EML2) Halo orbits. Because many different NRHOs and EML2 halo orbits exist, simplifying assumptions rely on previous analysis of orbits that meet current abort and communication requirements for human mission planning. Investigation is done into the sensitivities of these low thrust transfers to EP system power. Additionally, the impact of the Thrust to Weight ratio of these low thrust SEP systems and the ability to transit between these unique orbits are investigated

    Overview of the Mission Design Reference Trajectory for NASA's Asteroid Redirect Robotic Mission

    Get PDF
    The National Aeronautics and Space Administration's (NASA's) recently cancelled Asteroid Redirect Mission was proposed to rendezvous with and characterize a 100 m plus class near-Earth asteroid and provide the capability to capture and retrieve a boulder off of the surface of the asteroid and bring the asteroidal material back to cislunar space. Leveraging the best of NASA's science, technology, and human exploration efforts, this mission was originally conceived to support observation campaigns, advanced solar electric propulsion, and NASA's Space Launch System heavy-lift rocket and Orion crew vehicle. The asteroid characterization and capture portion of ARM was referred to as the Asteroid Redirect Robotic Mission (ARRM) and was focused on the robotic capture and then redirection of an asteroidal boulder mass from the reference target, asteroid 2008 EV5, into an orbit near the Moon, referred to as a Near Rectilinear Halo Orbit where astronauts would visit and study it. The purpose of this paper is to document the final reference trajectory of ARRM and the challenges and unique methods employed in the trajectory design of the mission

    Canine Filamentous Dermatitis Associated with Borrelia Infection

    Get PDF
    Background: Although canine clinical manifestations of Lyme disease vary widely, cutaneous manifestations are not well documented in dogs. In contrast, a variety of cutaneous manifestations are reported in human Lyme disease caused by the spirochete Borrelia burgdorferi. A recently recognized dermopathy associated with tickborne illness known as Morgellons disease is characterized by brightly-colored filamentous inclusions and projections detected in ulcerative lesions and under unbroken skin. Recent studies have demonstrated that the dermal filaments are collagen and keratin biofibers produced by epithelial cells in response to spirochetal infection. We now describe a similar filamentous dermatitis in canine Lyme disease. Methods and Results: Nine dogs were found to have cutaneous ulcerative lesions containing embedded or projecting dermal filaments. Spirochetes characterized as Borrelia spp. were detected in skin tissue by culture, histology, immunohistochemistry, polymerase chain reaction (PCR) and gene sequencing performed at five independent laboratories. Borrelia DNA was detected either directly from skin specimens or from cultures inoculated with skin specimens taken from the nine canine study subjects. Amplicon sequences from two canine samples matched gene sequences for Borrelia burgdorferi sensu stricto. PCR amplification failed to detect spirochetes in dermatological specimens from four healthy asymptomatic dogs. Conclusions: Our study provides evidence that a filamentous dermatitis analogous to Morgellons disease may be a manifestation of Lyme disease in domestic dogs

    Mars Earth Return Vehicle (MERV) Propulsion Options

    Get PDF
    The COMPASS Team was tasked with the design of a Mars Sample Return Vehicle. The current Mars sample return mission is a joint National Aeronautics and Space Administration (NASA) and European Space Agency (ESA) mission, with ESA contributing the launch vehicle for the Mars Sample Return Vehicle. The COMPASS Team ran a series of design trades for this Mars sample return vehicle. Four design options were investigated: Chemical Return /solar electric propulsion (SEP) stage outbound, all-SEP, all chemical and chemical with aerobraking. The all-SEP and Chemical with aerobraking were deemed the best choices for comparison. SEP can eliminate both the Earth flyby and the aerobraking maneuver (both considered high risk by the Mars Sample Return Project) required by the chemical propulsion option but also require long low thrust spiral times. However this is offset somewhat by the chemical/aerobrake missions use of an Earth flyby and aerobraking which also take many months. Cost and risk analyses are used to further differentiate the all-SEP and Chemical/Aerobrake options
    • …
    corecore