37 research outputs found

    The dopamine transporter constitutively internalizes and recycles in a protein kinase C-regulated manner in stably transfected PC12 cell lines

    Get PDF
    The dopamine transporter (DAT) removes dopamine from the extracellular milieu and is potently inhibited by number of psychoactive drugs, including cocaine, amphetamines, and methylphenidate (Ritalin). Multiple lines of evidence demonstrate that protein kinase C (PKC) down-regulates dopamine transport, primarily by redistributing DAT from the plasma membrane to endosomal compartments, although the mechanisms facilitating transporter sequestration are not defined. Here, we demonstrate that DAT constitutively internalizes and recycles in rat pheochromocytoma (PC12) cells. Temperature blockades demonstrated basal internalization and reliance on recycling to maintain DAT cell surface levels. In contrast, recycling blockade with bafilomycin A1 significantly decreased transferrin receptor (TfR) surface expression but had no effect on DAT surface levels, suggesting that DAT and TfR traffic via distinct endosomal mechanisms. Kinetic analyses reveal robust constitutive DAT cycling to and from the plasma membrane, independent of transporter expression levels. In contrast, phorbol ester-mediated PKC activation accelerated DAT endocytosis and attenuated transporter recycling in a manner sensitive to DAT expression levels. These data demonstrate constitutive DAT trafficking and that PKC-mediated DAT sequestration is achieved by a combination of accelerated internalization and reduced recycling. Additionally, the differential sensitivity to expression level exhibited by constitutive and regulated DAT trafficking suggests that these two processes are mediated by independent cellular mechanisms

    Measuring Plasma Membrane Protein Endocytic Rates by Reversible Biotinylation

    Get PDF
    Plasma membrane proteins are a large, diverse group of proteins comprised of receptors, ion channels, transporters and pumps. Activity of these proteins is responsible for a variety of key cellular events, including nutrient delivery, cellular excitability, and chemical signaling. Many plasma membrane proteins are dynamically regulated by endocytic trafficking, which modulates protein function by altering protein surface expression. The mechanisms that facilitate protein endocytosis are complex and are not fully understood for many membrane proteins. In order to fully understand the mechanisms that control the endocytic trafficking of a given protein, it is critical that the protein s endocytic rate be precisely measured. For many receptors, direct endocytic rate measurements are frequently achieved utilizing labeled receptor ligands. However, for many classes of membrane proteins, such as transporters, pumps and ion channels, there is no convenient ligand that can be used to measure the endocytic rate. In the present report, we describe a reversible biotinylation method that we employ to measure the dopamine transporter (DAT) endocytic rate. This method provides a straightforward approach to measuring internalization rates, and can be easily employed for trafficking studies of most membrane proteins

    Insertion of Tetracysteine Motifs into Dopamine Transporter Extracellular Domains

    Get PDF
    The neuronal dopamine transporter (DAT) is a major determinant of extracellular dopamine (DA) levels and is the primary target for a variety of addictive and therapeutic psychoactive drugs. DAT is acutely regulated by protein kinase C (PKC) activation and amphetamine exposure, both of which modulate DAT surface expression by endocytic trafficking. In order to use live imaging approaches to study DAT endocytosis, methods are needed to exclusively label the DAT surface pool. The use of membrane impermeant, sulfonated biarsenic dyes holds potential as one such approach, and requires introduction of an extracellular tetracysteine motif (tetraCys; CCPGCC) to facilitate dye binding. In the current study, we took advantage of intrinsic proline-glycine (Pro-Gly) dipeptides encoded in predicted DAT extracellular domains to introduce tetraCys motifs into DAT extracellular loops 2, 3, and 4. [3H]DA uptake studies, surface biotinylation and fluorescence microscopy in PC12 cells indicate that tetraCys insertion into the DAT second extracellular loop results in a functional transporter that maintains PKC-mediated downregulation. Introduction of tetraCys into extracellular loops 3 and 4 yielded DATs with severely compromised function that failed to mature and traffic to the cell surface. This is the first demonstration of successful introduction of a tetracysteine motif into a DAT extracellular domain, and may hold promise for use of biarsenic dyes in live DAT imaging studies

    Ack1 is a dopamine transporter endocytic brake that rescues a trafficking-dysregulated ADHD coding variant

    Get PDF
    The dopamine (DA) transporter (DAT) facilitates high-affinity presynaptic DA reuptake that temporally and spatially constrains DA neurotransmission. Aberrant DAT function is implicated in attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is a major psychostimulant target, and psychostimulant reward strictly requires binding to DAT. DAT function is acutely modulated by dynamic membrane trafficking at the presynaptic terminal and a PKC-sensitive negative endocytic mechanism, or endocytic brake, controls DAT plasma membrane stability. However, the molecular basis for the DAT endocytic brake is unknown, and it is unknown whether this braking mechanism is unique to DAT or common to monoamine transporters. Here, we report that the cdc42-activated, nonreceptor tyrosine kinase, Ack1, is a DAT endocytic brake that stabilizes DAT at the plasma membrane and is released in response to PKC activation. Pharmacologic and shRNA-mediated Ack1 silencing enhanced basal DAT internalization and blocked PKC-stimulated DAT internalization, but had no effects on SERT endocytosis. Both cdc42 activation and PKC stimulation converge on Ack1 to control Ack1 activity and DAT endocytic capacity, and Ack1 inactivation is required for stimulated DAT internalization downstream of PKC activation. Moreover, constitutive Ack1 activation is sufficient to rescue the gain-of-function endocytic phenotype exhibited by the ADHD DAT coding variant, R615C. These findings reveal a unique endocytic control switch that is highly specific for DAT. Moreover, the ability to rescue the DAT(R615C) coding variant suggests that manipulating DAT trafficking mechanisms may be a potential therapeutic approach to correct DAT coding variants that exhibit trafficking dysregulation

    Dopamine transporter endocytic trafficking in striatal dopaminergic neurons: differential dependence on dynamin and the actin cytoskeleton

    Get PDF
    Dopaminergic signaling profoundly impacts rewarding behaviors, movement, and executive function. The presynaptic dopamine (DA) transporter (DAT) recaptures released DA, thereby limiting synaptic DA availability and maintaining dopaminergic tone. DAT constitutively internalizes and PKC activation rapidly accelerates DAT endocytosis, resulting in DAT surface loss. Longstanding evidence supports PKC-stimulated DAT trafficking in heterologous expression studies. However, PKC-stimulated DAT internalization is not readily observed in cultured dopaminergic neurons. Moreover, conflicting reports implicate both classic and nonclassic endocytic mechanisms mediating DAT trafficking. Prior DAT trafficking studies relied primarily upon chronic gene disruption and dominant-negative protein expression, or were performed in cell lines and cultured neurons, yielding results difficult to translate to adult dopaminergic neurons. Here, we use newly described dynamin inhibitors to test whether constitutive and PKC-stimulated DAT internalization are dynamin-dependent in adult dopaminergic neurons. Ex vivo biotinylation studies in mouse striatal slices demonstrate that acute PKC activation drives native DAT surface loss, and that surface DAT surprisingly partitions between endocytic-willing and endocytic-resistant populations. Acute dynamin inhibition reveals that constitutive DAT internalization is dynamin-independent, whereas PKC-stimulated DAT internalization is dynamin-dependent. Moreover, total internal reflection fluorescence microscopy experiments demonstrate that constitutive DAT internalization occurs equivalently from lipid raft and nonraft microdomains, whereas PKC-stimulated DAT internalization arises exclusively from lipid rafts. Finally, DAT endocytic recycling relies on a dynamin-dependent mechanism that acts in concert with the actin cytoskeleton. These studies are the first comprehensive investigation of native DAT trafficking in ex vivo adult neurons, and reveal that DAT surface dynamics are governed by complex multimodal mechanisms

    The Dopamine Transporter Recycles via a Retromer-Dependent Postendocytic Mechanism: Tracking Studies Using a Novel Fluorophore-Coupling Approach

    Get PDF
    Presynaptic reuptake, mediated by the dopamine (DA) transporter (DAT), terminates DAergic neurotransmission and constrains extracellular DA levels. Addictive and therapeutic psychostimulants inhibit DA reuptake and multiple DAT coding variants have been reported in patients with neuropsychiatric disorders. These findings underscore that DAT is critical for DA neurotransmission and homeostasis. DAT surface availability is regulated acutely by endocytic trafficking, and considerable effort has been directed toward understanding mechanisms that govern DAT\u27s plasma membrane expression and postendocytic fate. Multiple studies have demonstrated DAT endocytic recycling and enhanced surface delivery in response to various stimuli. Paradoxically, imaging studies have not detected DAT targeting to classic recycling endosomes, suggesting that internalized DAT targets to either degradation or an undefined recycling compartment. Here, we leveraged PRIME (PRobe Incorporation Mediated by Enzyme) labeling to couple surface DAT directly to fluorophore, and tracked DAT\u27s postendocytic itinerary in immortalized mesencephalic cells. Following internalization, DAT robustly targeted to retromer-positive endosomes, and DAT/retromer colocalization was observed in male mouse dopaminergic somatodendritic and terminal regions. Short hairpin RNA-mediated Vps35 knockdown revealed that DAT endocytic recycling requires intact retromer. DAT also targeted rab7-positive endosomes with slow, linear kinetics that were unaffected by either accelerating DAT internalization or binding a high-affinity cocaine analog. However, cocaine increased DAT exit from retromer-positive endosomes significantly. Finally, we found that the DAT carboxy-terminal PDZ-binding motif was required for DAT recycling and exit from retromer. These results define the DAT recycling mechanism and provide a unifying explanation for previous, seemingly disparate, DAT endocytic trafficking findings. SIGNIFICANCE STATEMENT The neuronal dopamine (DA) transporter (DAT) recaptures released DA and modulates DAergic neurotransmission, and a number of DAT coding variants have been reported in several DA-related disorders, including infantile parkinsonism, attention-deficit/hyperactivity disorder and autism spectrum disorder. DAT is also competitively inhibited by psychostimulants with high abuse potential. Therefore, mechanisms that acutely affect DAT availability will likely exert significant impact on both normal and pathological DAergic homeostasis. Here, we explore the cellular mechanisms that acutely control DAT surface expression. Our results reveal the intracellular mechanisms that mediate DAT endocytic recycling following constitutive and regulated internalization. In addition to shedding light on this critical process, these findings resolve conflict among multiple, seemingly disparate, previous reports on DAT\u27s postendocytic fate

    The Plasma Membrane-Associated GTPase Rin Interacts with the Dopamine Transporter and Is Required for Protein Kinase C-Regulated Dopamine Transporter Trafficking

    Get PDF
    Dopaminergic signaling and plasticity are essential to numerous CNS functions and pathologies, including movement, cognition, and addiction. The amphetamine- and cocaine-sensitive dopamine (DA) transporter (DAT) tightly controls extracellular DA concentrations and half-life. DAT function and surface expression are not static but are dynamically modulated by membrane trafficking. We recently demonstrated that the DAT C terminus encodes a PKC-sensitive internalization signal that also suppresses basal DAT endocytosis. However, the cellular machinery governing regulated DAT trafficking is not well defined. In work presented here, we identified the Ras-like GTPase, Rin (for Ras-like in neurons) (Rit2), as a protein that interacts with the DAT C-terminal endocytic signal. Yeast two-hybrid, GST pull down and FRET studies establish that DAT and Rin directly interact, and colocalization studies reveal that DAT/Rin associations occur primarily in lipid raft microdomains. Coimmunoprecipitations demonstrate that PKC activation regulates Rin association with DAT. Perturbation of Rin function with GTPase mutants and shRNA-mediated Rin knockdown reveals that Rin is critical for PKC-mediated DAT internalization and functional downregulation. These results establish that Rin is a DAT-interacting protein that is required for PKC-regulated DAT trafficking. Moreover, this work suggests that Rin participates in regulated endocytosis

    Dopamine transporter trafficking and Rit2 GTPase: Mechanism of action and in vivo impact

    Get PDF
    Following its evoked release, DA signaling is rapidly terminated by presynaptic reuptake, mediated by the cocaine-sensitive DAT. DAT surface availability is dynamically regulated by endocytic trafficking, and direct PKC activation acutely diminishes DAT surface expression by accelerating DAT internalization. Previous cell line studies demonstrated that PKC-stimulated DAT endocytosis requires both Ack1 inactivation, which releases a DAT-specific endocytic brake, and the neuronal GTPase, Rit2, which binds DAT. However, it is unknown whether Rit2 is required for PKC-stimulated DAT endocytosis in DAergic terminals, or whether there are region- and/or sex-dependent differences in PKC-stimulated DAT trafficking. Moreover, the mechanisms by which Rit2 controls PKC-stimulated DAT endocytosis are unknown. Here, we directly examined these important questions. Ex vivo studies revealed that PKC activation acutely decreased DAT surface expression selectively in ventral, but not dorsal, striatum. AAV-mediated, conditional Rit2 knockdown in DAergic neurons impacted baseline DAT surface:intracellular distribution in DAergic terminals from female ventral, but not dorsal, striatum. Further, Rit2 was required for PKC-stimulated DAT internalization in both male and female ventral striatum. FRET and surface pulldown studies in cell lines revealed that PKC activation drives DAT-Rit2 surface dissociation, and that the DAT N-terminus is required for both PKC-mediated DAT-Rit2 dissociation and DAT internalization. Finally, we found that Rit2 and Ack1 independently converge on DAT to facilitate PKC-stimulated DAT endocytosis. Together, our data provide greater insight into mechanisms that mediate PKC-regulated DAT internalization, and reveal unexpected region-specific differences in PKC-stimulated DAT trafficking in bona fide DAergic terminals

    Neurotransmitter transporter trafficking: endocytosis, recycling, and regulation

    No full text
    Sodium- and chloride-dependent transporters in the SLC6 gene family are key regulators of extracellular neurotransmitter levels and are required for normal neurotransmission. Copious evidence supports the premise that membrane trafficking dynamically modulates transporter surface expression in response to psychostimulant exposure, receptor activation, and neuronal activity. Recent work from our group and others demonstrates that many SLC6 transporters not only traffic in response to exogenous stimuli, but also constitutively traffic, with exogenous signaling modulating intrinsic transporter trafficking kinetics. This review focuses on what is currently understood about constitutive and regulated transporter trafficking, and poses a model wherein endocytic trafficking dynamically primes transporters for multi-faceted regulatory events
    corecore