187 research outputs found
Suppression of Quantum Scattering in Strongly Confined Systems
We demonstrate that scattering of particles strongly interacting in three
dimensions (3D) can be suppressed at low energies in a quasi-one-dimensional
(1D) confinement. The underlying mechanism is the interference of the s- and
p-wave scattering contributions with large s- and p-wave 3D scattering lengths
being a necessary prerequisite. This low-dimensional quantum scattering effect
might be useful in "interacting" quasi-1D ultracold atomic gases, guided atom
interferometry, and impurity scattering in strongly confined quantum wire-based
electronic devices.Comment: 3 figs, Phys. Rev. Lett. (early November issue
Resonant d-wave scattering in harmonic waveguides
We observe and analyze d-wave resonant scattering of bosons in tightly
confining harmonic waveguides. It is shown that the d-wave resonance emerges in
the quasi-1D regime as an imprint of a 3D d-wave shape resonance. A scaling
relation for the position of the d-wave resonance is provided. By changing the
trap frequency, ultracold scattering can be continuously tuned from s-wave to
d-wave resonant behavior. The effect can be utilized for the realization of
ultracold atomic gases interacting via higher partial waves and opens a novel
possibility for studying strongly correlated atomic systems beyond s-wave
physics.Comment: 6 pages, 9 figure
Unusual, basin-scale, fluid–rock interaction in the Palaeoproterozoic Onega basin from Fennoscandia : Preservation in calcite δ18O of an ancient high geothermal gradient
Acknowledgements We acknowledge financial support from ICDP for the drilling programme. AEF, ATB and ARP thank NERC for financial support through NE/G00398X/1. VAM thanks the Norwegian Research Council for financial support through 191530/V30. We are grateful for sample preparation and analyses to all the personnel at NGU lab. At SUERC we enjoyed exceptional analytical support from Julie Dougans. Anonymous reviewers and the editor provided comments that improved the final manuscript.Peer reviewedPostprin
Differential cross sections for muonic atom scattering from hydrogenic molecules
The differential cross sections for low-energy muonic hydrogen atom
scattering from hydrogenic molecules are directly expressed by the
corresponding amplitudes for muonic atom scattering from hydrogen-isotope
nuclei. The energy and angular dependence of these three-body amplitudes is
thus taken naturally into account in scattering from molecules, without
involving any pseudopotentials. Effects of the internal motion of nuclei inside
the target molecules are included for every initial rotational-vibrational
state. These effects are very significant as the considered three-body
amplitudes often vary strongly within the energy interval eV.
The differential cross sections, calculated using the presented method, have
been successfully used for planning and interpreting many experiments in
low-energy muon physics. Studies of nuclear capture in and the
measurement of the Lamb shift in atoms created in H gaseous targets
are recent examples.Comment: 21 pages, 13 figures, submitted to Phys. Rev.
Petrography and geochemistry of carbonate rocks of the Paleoproterozoic Zaonega Formation, Russia : Documentation of C-13-depleted non-primary calcite
The Norwegian Research Council grant 191530/V30 to V.A. Melezhik fully funded the work of AEC, VAM and AL. ATB was supported by NERC grant NE/G00398X/1 to AEF and ARP. We are grateful for sample preparation and analyses to all the personnel at NGU lab. We appreciate the work on carbon and oxygen isotope analyses by Julie Dougans and Chris Taylor. Bojan Otoničar organized and helped with the CL work at the Karst Research Institute at Postojna. Arrangement of TOC, IC, and TC analyses at University of Münster is acknowledged to Harald Strauss.Peer reviewedPostprin
- …