12 research outputs found

    Polychlorinated Biphenyls and Leukocyte Telomere Length: An Analysis of NHANES 1999–2002

    Get PDF
    Polychlorinated biphenyls (PCBs) induce the expression of the proto-oncogene c-myc which has a role in cellular growth and proliferation programs. The c-myc up-regulates the telomerase reverse transcriptase which adds the telomeres repeating sequences to the chromosomal ends to compensate for the progressive loss of telomeric sequence. We performed multivariate linear regression to analyze the association of PCBs, polychlorinated dibenzo-p-dioxins, and 1,2,3,4,6,7,8-heptachlorodibenzofuran with leukocyte telomere length (LTL) in the adult population (n = 2413) of the National Health and Nutrition Examination Survey 1999–2002. LTL was natural log-transformed and the results were re-transformed and presented as percent differences. Individuals in the 3rd and 4th quartiles of the sum of PCBs were associated with 8.33% (95% CI: 4.08–13.88) and 11.63% (95% CI: 6.18–17.35) longer LTLs, respectively, compared with the lowest quartile, with evidence of a dose–response relationship (p-trend < 0.01). The association of the sum PCBs with longer LTL was found in both sexes. Additionally, 1,2,3,4,6,7,8-heptachlorodibenzofuran and 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin were associated with longer LTL. The age independent association between longer LTL and environmental exposures to PCBs, 1,2,3,4,6,7,8-heptachlorodibenzofuran and 1,2,3,6,7,8-hexachlorodibenzo-p-dioxin may support a role as tumor promoter of these compounds. Further studies to evaluate the effect of these compounds on LTL are needed to more fully understand the implications of our finding

    Blood lead level association with lower body weight in NHANES 1999-2006

    No full text
    BACKGROUND Lead exposure is associated with low birth-weight. The objective of this study is to determine whether lead exposure is associated with lower body weight in children, adolescents and adults. METHODS We analyzed data from NHANES 1999-2006 for participants aged ≥3 using multiple logistic and multivariate linear regression. Using age- and sex-standardized BMI Z-scores, overweight and obese children (ages 3-19) were classified by BMI ≥85 th and ≥95 th percentiles, respectively. The adult population (age ≥20) was classified as overweight and obese with BMI measures of 25-29.9 and ≥30, respectively. Blood lead level (BLL) was categorized by weighted quartiles. RESULTS Multivariate linear regressions revealed a lower BMI Z-score in children and adolescents when the highest lead quartile was compared to the lowest lead quartile (β (SE)=-0.33 (0.07), p<0.001), and a decreased BMI in adults (β (SE)=-2.58 (0.25), p<0.001). Multiple logistic analyses in children and adolescents found a negative association between BLL and the percentage of obese and overweight with BLL in the highest quartile compared to the lowest quartile (OR=0.42, 95% CI: 0.30-0.59; and OR=0.67, 95% CI: 0.52-0.88, respectively). Adults in the highest lead quartile were less likely to be obese (OR=0.42, 95% CI: 0.35-0.50) compared to those in the lowest lead quartile. Further analyses with blood lead as restricted cubic splines, confirmed the dose-relationship between blood lead and body weight outcomes. CONCLUSIONS BLLs are associated with lower body mass index and obesity in children, adolescents and adults
    corecore