40 research outputs found
X-shooter and ALMA spectroscopy of GRB 161023A A study of metals and molecules in the line of sight towards a luminous GRB
Context. Long gamma-ray bursts (GRBs) are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. Over a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions.
Aims. We aim to use the afterglow of GRB 161023A at a redshift zâ=â2.710 as a background source to study the environment of the explosion and the intervening systems along its line of sight.
Methods. For the first time, we complement ultraviolet (UV), optical and near-infrared (NIR) spectroscopy with millimetre spectroscopy using the Atacama Large Millimeter Array (ALMA), which allows us to probe the molecular content of the host galaxy. The X-shooter spectrum shows a plethora of absorption features including fine-structure and metastable transitions of Fe, Ni, Si, C, and O. We present photometry ranging from 43 s to over 500 days after the burst.
Results. We infer a host-galaxy metallicity of [Zn/H]â=ââ1.11â
屉
0.07, which, corrected for dust depletion, results in [X/H]â=ââ0.94â
屉
0.08. We do not detect molecular features in the ALMA data, but we derive limits on the molecular content of log(NCO/cmâ2) < 15.7 and log(NHCO+/cmâ-12, which are consistent with those that we obtain from the optical spectra, log(NH2/cmâ2)< 15.2 and log(NCO/cmâ2) < 14.5. Within the host galaxy, we detect three velocity systems through UV, optical and NIR absorption spectroscopy, all with levels that were excited by the GRB afterglow. We determine the distance from these systems to the GRB to be in the range between 0.7 and 1.0 kpc. The sight line to GRB 161023A shows nine independent intervening systems, most of them with multiple components.
Conclusions. Although no molecular absorption was detected for GRB 161023A, we show that GRB millimetre spectroscopy is now feasible and is opening a new window on the study of molecular gas within star-forming galaxies at all redshifts. The most favoured lines of sight for this purpose will be those with high metallicity and dust
Photometric and spectroscopic evolution of the interacting transient at 2016jbu(Gaia16cfr)
We present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of MV âŒ-18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s-1 seen in narrow emission features from a slow-moving CSM, and up to 10 000 km s-1 seen in broad absorption from some high-velocity material. Late-time spectra (âŒ+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, He i, and Ca ii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of H α among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients
Progenitor, environment, and modelling of the interacting transient AT 2016jbu (Gaia16cfr)
We present the bolometric light curve, identification and analysis of the progenitor candidate, and preliminary modelling of AT 2016jbu (Gaia16cfr). We find a progenitor consistent with a âŒ22-25 Mâ yellow hypergiant surrounded by a dusty circumstellar shell, in agreement with what has been previously reported. We see evidence for significant photometric variability in the progenitor, as well as strong Hα emission consistent with pre-existing circumstellar material. The age of the environment, as well as the resolved stellar population surrounding AT 2016jbu, supports a progenitor age of >10 Myr, consistent with a progenitor mass of âŒ22 Mâ. A joint analysis of the velocity evolution of AT 2016jbu and the photospheric radius inferred from the bolometric light curve shows the transient is consistent with two successive outbursts/explosions. The first outburst ejected material with velocity âŒ650 km s-1, while the second, more energetic event ejected material at âŒ4500 km s-1. Whether the latter is the core collapse of the progenitor remains uncertain. We place a limit on the ejected 56Ni mass of <0.016 Mâ. Using the Binary Population And Spectral Synthesis (BPASS) code, we explore a wide range of possible progenitor systems and find that the majority of these are in binaries, some of which are undergoing mass transfer or common-envelope evolution immediately prior to explosion. Finally, we use the SuperNova Explosion Code (SNEC) to demonstrate that the low-energy explosions within some of these binary systems, together with sufficient circumstellar material, can reproduce the overall morphology of the light curve of AT 2016jbu
Observation of a sudden cessation of a very-high-energy gamma-ray flare in PKS 1510-089 with H.E.S.S. and MAGIC in May 2016
The flat spectrum radio quasar (FSRQ) PKS 1510-089 is known for its complex multiwavelength behavior, and is one of only a few FSRQs detected at very high energy (VHE, E >100 GeV) -rays. VHE -ray observations with H.E.S.S. and MAGIC during late May and early June 2016 resulted in the detection of an unprecedented flare, which reveals for the first time VHE -ray intranight variability in this source. While a common variability timescale of 1.5 hr is found, there is a significant deviation near the end of the flare with a timescale of ⌠20 min marking the cessation of the event. The peak flux is nearly two orders of magnitude above the low-level emission. For the first time, curvature is detected in the VHE -ray spectrum of PKS 1510-089, which is fully explained through absorption by the extragalactic background light. Optical R-band observations with ATOM reveal a counterpart of the -ray flare, even though the detailed flux evolution differs from the VHE lightcurve. Interestingly, a steep flux decrease is observed at the same time as the cessation of the VHE flare. In the high energy (HE, E >100 MeV) -ray band only a moderate flux increase is observed with Fermi-LAT, while the HE -ray spectrum significantly hardens up to a photon index of 1.6. A search for broad-line region (BLR) absorption features in the -ray spectrum indicates that the emission region is located outside of the BLR. Radio VLBI observations reveal a fast moving knot interacting with a standing jet feature around the time of the flare. As the standing feature is located ⌠50 pc from the black hole, the emission region of the flare may have been located at a significant distance from the black hole. If this correlation is indeed true, VHE rays have been produced far down the jet where turbulent plasma crosses a standing shock.Accepted manuscrip
Political independence of the South African Reserve Bank: Managing interest rates
Purpose: The purpose of this article is to determine whether the South African Reserve Bank (SARB) is politically independent and able to operate without undue external influence.
Problem investigated: The SARB is under increasing pressure to shift its monetary policy stance in order to boost the countryâs competitiveness. Whether external demands have compromised its independence at times has been the subject of debate.
Methodology: The study comprised a literature review and econometric analysis of the Bankâs independence. Movements in interest rates were used as an indicator of dependence. The analysis was between actual interest rates in South Africa over the past two decades, and a model of what interest rates should have been during this period, with reference to Taylorâs Rule. Differences between the two were assumed to expose shortcomings in the direction of South Africaâs monetary policy and therefore some degree of dependence.
Findings and implications: Movement of the two sets of rates correlated, which suggests SARB independence. The findings did not reveal harmony between the levels of the two sets of rates. However, the latter correlation was not the focus of this study.
Originality and value of the research: This study makes an important contribution, as few authors researched the relationship between interest rates and the SARBâs independence scientifically. The study is well timed as the SARBâs independence debate has reached concerning levels.
Conclusion: The results suggest almost no level of dependence â which does not necessarily imply that the SARB is entitled to reject all external input, but rather that it can prioritise its objective of price stability over other concerns
Study protocol for a phase 2A trial of the safety and tolerability of increased dose rifampicin and adjunctive linezolid, with or without aspirin, for HIV-associated tuberculous meningitis [LASER-TBM] [version 1; peer review: 2 approved]
Background: Tuberculous meningitis (TBM) is the most lethal form of tuberculosis with a mortality of ~50% in those co-infected with HIV-1. Current antibiotic regimens are based on those known to be effective in pulmonary TB and do not account for the differing ability of the drugs to penetrate the central nervous system (CNS). The host immune response drives pathology in TBM, yet effective host-directed therapies are scarce. There is sufficient data to suggest that higher doses of rifampicin (RIF), additional linezolid (LZD) and adjunctive aspirin (ASA) will be beneficial in TBM yet rigorous investigation of the safety of these interventions in the context of HIV associated TBM is required. We hypothesise that increased dose RIF, LZD and ASA used in combination and in addition to standard of care for the first 56 days of treatment with be safe and tolerated in HIV-1 infected people with TBM. Methods: In an open-label randomised parallel study, up to 100 participants will receive either; i) standard of care (n=40, control arm), ii) standard of care plus increased dose RIF (35mg/kg) and LZD (1200mg OD for 28 days, 600mg OD for 28 days) (n=30, experimental arm 1), or iii) as per experimental arm 1 plus additional ASA 1000mg OD (n=30, experimental arm 2). After 56 days participants will continue standard treatment as per national guidelines. The primary endpoint is death and the occurrence of solicited treatment-related adverse events at 56 days. In a planned pharmacokinetic (PK) sub-study we aim to assess PK/pharmacodynamic (PD) of oral vs IV rifampicin, describe LZD and RIF PK and cerebrospinal fluid concentrations, explore PK/PD relationships, and investigate drug-drug interactions between LZD and RIF. Safety and pharmacokinetic data from this study will inform a planned phase III study of intensified therapy in TBM. Clinicaltrials.gov registration: NCT03927313 (25/04/2019
Photometric and spectroscopic evolution of the interacting transient ATÂ 2016jbu(Gaia16cfr)
International audienceWe present the results from a high-cadence, multiwavelength observation campaign of AT 2016jbu (aka Gaia16cfr), an interacting transient. This data set complements the current literature by adding higher cadence as well as extended coverage of the light-curve evolution and late-time spectroscopic evolution. Photometric coverage reveals that AT 2016jbu underwent significant photometric variability followed by two luminous events, the latter of which reached an absolute magnitude of ⌠â18.5 mag. This is similar to the transient SN 2009ip whose nature is still debated. Spectra are dominated by narrow emission lines and show a blue continuum during the peak of the second event. AT 2016jbu shows signatures of a complex, non-homogeneous circumstellar material (CSM). We see slowly evolving asymmetric hydrogen line profiles, with velocities of 500 km s^â1 seen in narrow emission features from a slow-moving CSM, and up to 10â000 km s^â1 seen in broad absorption from some high-velocity material. Late-time spectra (âŒ+1 yr) show a lack of forbidden emission lines expected from a core-collapse supernova and are dominated by strong emission from H, Heâi, and Caâii. Strong asymmetric emission features, a bumpy light curve, and continually evolving spectra suggest an inhibit nebular phase. We compare the evolution of Hâα among SN 2009ip-like transients and find possible evidence for orientation angle effects. The light-curve evolution of AT 2016jbu suggests similar, but not identical, circumstellar environments to other SN 2009ip-like transients