193 research outputs found

    Quality Enhancement of Physical Education in Chinese Universities from the Perspective of the Supply-side Structural Reform

    Get PDF
    The overall characteristics of higher education in China have been transformed from extensible development to connotative development, which is consistent with the core content of improving quality and effect in the strategy of supply-side structural reform. In response to the current dilemma of the supply-side output of physical education in Chinese universities, it calls for a balance between the demand and supply for higher physical education. In terms of exploring factors that contribute to a high-quality education system from the perspective of supply-side structural reform, the supplier, the content, the mode, and the conditions of the supply side is supposed to be optimized by improving the teaching abilities of the leading suppliers, optimizing the output of the supply content, facilitating a collaborative supply model, and expanding the online supply field. Accordingly, the coordinated and unified development of the supply and demand of physical education for college students can be promoted, to enhance the quality of physical education in Chinese universities

    Response of Three Kinds of Detoxifying Enzymes from Odontotermes formosanus (Shiraki) to the Stress Caused by Serratia marcescens Bizio (SM1)

    Get PDF
    Subterranean termite Odontotermes formosanus (Shiraki) (Blattodea: Isoptera: Termitidae), is a pest species found in forests and dams. Serratia marcescens Bizio (SM1) has a potential pathogenic effect on O. formosanus. However, the response of detoxifying enzymes to exposure by S. marcescens in O. formosanus has not been studied. In the present work, 20 detoxifying enzyme genes, including 6 glutathione S-transferases (GSTs), 5 UDP glycosyltransferases (UGTs) and 9 Cytochrome P450s (CYPs), were identified from the O. formosanus transcriptome dataset by bioinformatics analysis. Furthermore, the effects of SM1 infection on the transcription levels of detoxifying enzyme genes (GSTs, UGTs and CYPs) in O. formosanus were determined. The results showed that the expression of all detoxifying enzyme gene, except one GST, in O. formosanus were altered in response to the infection by SM1. The response of GSTs, UGTs and CYPs to SM1 in O. formosanus suggested that they may play an important role in the defense against bacterial infection such as SM1, and implies that termites have evolved a complex immune response to potential pathogens

    Highly efficient polarization-independent grating coupler used in silica-based hybrid photodetector integration

    Get PDF
    A highly efficient polarization-independent output grating coupler was optimized and designed based on silicon-on-insulator used for silica-based hybrid photodetector integration in an arrayed waveguide grating demodulation-integrated microsystem. The finite-difference time-domain (FDTD) method optimizes coupling efficiency by enabling the design of the grating period, duty cycle, etch depth, grating length, and polarization-dependent loss (PDL). The output coupling efficiencies of both the transverse electric (TE) and transverse magnetic (TM) modes are higher than 60% at 1517 to 1605 nm and similar to 67% at around 1550 nm. The designed grating exhibits the desired property at the 3-dB bandwidth of 200 nm from 1450 to 1650 nm and a PDL \u3c0.5 dB of 110 nm from 1513 to 1623 nm. The power absorption efficiency at 1550 nm for TE and TM modes reaches 78% and 70%, respectively. Both the power absorption efficiency of TE mode and that of TM mode are over 70% in a broad band of 1491 to 1550 nm

    Preliminary investigation of an SOI-based arrayed waveguide grating demodulation integration microsystem

    Get PDF
    An arrayed waveguide grating (AWG) demodulation integration microsystem is investigated in this study. The system consists of a C-band on-chip LED, a 2 × 2 silicon nanowire-based coupler, a fiber Bragg grating (FBG) array, a 1 × 8 AWG, and a photoelectric detector array. The coupler and AWG are made from silicon-on-insulator wafers using electron beam exposure and response-coupled plasma technology. Experimental results show that the excess loss in the MMI coupler with a footprint of 6 × 100 μm(2) is 0.5423 dB. The 1 × 8 AWG with a footprint of 267 × 381 μm(2) and a waveguide width of 0.4 μm exhibits a central channel loss of −3.18 dB, insertion loss non-uniformity of −1.34 dB, and crosstalk level of −23.1 dB. The entire system is preliminarily tested. Wavelength measurement precision is observed to reach 0.001 nm. The wavelength sensitivity of each FBG is between 0.04 and 0.06 nm/dB

    ATGL promotes the proliferation of hepatocellular carcinoma cells via the p‐AKT signaling pathway

    Get PDF
    Abnormal metabolism, including abnormal lipid metabolism, is a hallmark of cancer cells. Some studies have demonstrated that the lipogenic pathway might promote the development of hepatocellular carcinoma (HCC). However, the role of adipose triglyceride lipase (ATGL) in hepatocellular carcinoma cells has not been elucidated. We evaluated the function of ATGL in hepatocellular carcinoma using methyl azazolyl blue and migration assay through overexpression of ATGL in HepG2 cells. Quantitative reverse‐transcription polymerase chain reaction and Western blot analyses were used to assess the mechanisms of ATGL in hepatocellular carcinoma. In the current study, we first constructed and transiently transfected ATGL into hepatocellular carcinoma cells. Secondly, we found that ATGL promoted the proliferation of hepatoma cell lines via upregulating the phosphorylation of AKT, but did not affect the metastatic ability of HCC cells. Moreover, the p‐AKT inhibitor significantly eliminated the effect of ATGL on the proliferation of hepatoma carcinoma cells. Taken together, our results indicated that ATGL promotes hepatocellular carcinoma cells proliferation through upregulation of the AKT signaling pathway

    VMGuards:A Novel Virtual Machine Based Code Protection System with VM Security as the First Class Design Concern

    Get PDF
    Process-level virtual machine (PVM) based code obfuscation is a viable means for protecting software against runtime code tampering and unauthorized code reverse engineering. PVM-based approaches rely on a VM to determine how instructions of the protected code region are scheduled and executed. Therefore, it is crucial to protect the VM against runtime code tampering that alters the instructions and behavior of the VM. This paper presents VMGuards, a novel PVM-based code protection system that puts the security of VM as the first class design concern. Our approach advances prior work by promoting security of the VM as the first class design constraint. We achieve this by introducing two new instruction sets to protect the internal implementations of critical code segments and the host runtime environment where the VM runs in. Our new instruction sets not only have an identical code structure as standard virtual instructions, but also provide additional information to allow the VM to check whether the critical internal implementation or the runtime environment is affected. We evaluate our approach by using a set of real-life applications. Experimental results show that our approach provides stronger and more fine-grained protection when compared to the state-of-the-art with little extra overhead
    • …
    corecore