290 research outputs found

    The Microchannel X-ray Telescope for the Gamma-Ray Burst mission SVOM

    Full text link
    We present the Microchannel X-ray Telescope, a new light and compact focussing telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science. The MXT design is based on the coupling of square pore micro-channel plates with a low noise pnCCD. MXT will provide an effective area of about 50 cmsq, and its point spread function is expected to be better than 3.7 arc min (FWHM) on axis. The estimated sensitivity is adequate to detect all the afterglows of the SVOM GRBs, and to localize them to better then 60 arc sec after five minutes of observation.Comment: 12 pages, 8 figures, to be published in SPIE Astronomical Telescopes + Instrumentation, Montreal, June 201

    Spectral performance of the Microchannel X-ray Telescope on board the SVOM mission

    Full text link
    The Microchannel X-ray Telescope (MXT) is an innovative compact X-ray instrument on board the SVOM astronomical mission dedicated to the study of transient phenomena such as gamma-ray bursts. During 3 weeks, we have tested the MXT flight model at the Panter X-ray test facility under the nominal temperature and vacuum conditions that MXT will undergo in-flight. We collected data at series of characteristic energies probing the entire MXT energy range, from 0.28 keV up to 9 keV, for multiple source positions with the center of the point spread function (PSF) inside and outside the detector field of view (FOV). We stacked the data of the positions with the PSF outside the FOV to obtain a uniformly illuminated matrix and reduced all data sets using a dedicated pipeline. We determined the best spectral performance of MXT using an optimized data processing, especially for the energy calibration and the charge sharing effect induced by the pixel low energy thresholding. Our results demonstrate that MXT is compliant with the instrument requirement regarding the energy resolution (<80 eV at 1.5 keV), the low and high energy threshold, and the accuracy of the energy calibration (±\pm20 eV). We also determined the charge transfer inefficiency (~10510^{-5}) of the detector and modeled its evolution with energy prior to the irradiation that MXT will undergo during its in-orbit lifetime. Finally, we measured the relation of the energy resolution as function of the photon energy. We determined an equivalent noise charge of 4.9 ±\pm 0.2 e- rms for the MXT detection chain and a Fano factor of 0.131 ±\pm 0.003 in silicon at 208 K, in agreement with previous works. This campaign confirmed the promising scientific performance that MXT will be able to deliver during the mission lifetime.Comment: 20 pages, 10 figures, accepted for publication in Experimental Astronom

    The Microchannel X-ray Telescope on Board the SVOM Satellite

    Full text link
    We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about 1{\deg}) telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is based on square micro pore optics (MPOs), coupled with a low noise CCD. The optics are based on a "Lobster Eye" design, while the CCD is a focal plane detector similar to the type developed for the seven eROSITA telescopes. MXT is a compact and light (<35 kg) telescope with a 1 m focal length, and it will provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy of the afterglows of the SVOM GRBs to better than 1 arc min (90\% c.l. with no systematics) provided MXT data are collected within 5 minutes after the trigger. The MXT sensitivity will be adequate to detect the afterglows for almost all the SVOM GRBs as well as to perform observations of non-GRB astrophysical objects. These performances are fully adapted to the SVOM science goals, and prove that small and light telescopes can be used for future small X-ray missions.Comment: 6 pages, 6 figures, proceedings of the conference "Swift: 10 years of Discovery", Rome, December 2-5, 2014. To be published by Po

    Rank-(n – 1) convexity and quasiconvexity for divergence free fields

    Get PDF
    The CAST experiment at CERN (European Organization of Nuclear Research) searches for axions from the sun. The axion is a pseudoscalar particle that was motivated by theory thirty years ago, with the intention to solve the strong CP problem. Together with the neutralino, the axion is one of the most promising dark matter candidates. The CAST experiment has been taking data during the last two years, setting an upper limit on the coupling of axions to photons more restrictive than from any other solar axion search in the mass range below 0.1 eV. In 2005 CAST will enter a new experimental phase extending the sensitivity of the experiment to higher axion masses. The CAST experiment strongly profits from technology developed for high energy physics and for X-ray astronomy: A superconducting prototype LHC magnet is used to convert potential axions to detectable X-rays in the 1-10 keV range via the inverse Primakoff effect. The most sensitive detector system of CAST is a spin-off from space technology, a Wolter I type X-ray optics in combination with a prototype pn-CCD developed for ESA's XMM-Newton mission. As in other rare event searches, background suppression and a thorough shielding concept is essential to improve the sensitivity of the experiment to the best possible. In this context CAST offers the opportunity to study the background of pn-CCDs and its long term behavior in a terrestrial environment with possible implications for future space applications. We will present a systematic study of the detector background of the pn-CCD of CAST based on the data acquired since 2002 including preliminary results of our background simulations.Comment: 11 pages, 8 figures, to appear in Proc. SPIE 5898, UV, X-Ray, and Gamma-Ray Space Instrumentation for Astronomy XI

    eROSITA Science Book: Mapping the Structure of the Energetic Universe

    Full text link
    eROSITA is the primary instrument on the Russian SRG mission. In the first four years of scientific operation after its launch, foreseen for 2014, it will perform a deep survey of the entire X-ray sky. In the soft X-ray band (0.5-2 keV), this will be about 20 times more sensitive than the ROSAT all sky survey, while in the hard band (2-10 keV) it will provide the first ever true imaging survey of the sky at those energies. Such a sensitive all-sky survey will revolutionize our view of the high-energy sky, and calls for major efforts in synergic, multi-wavelength wide area surveys in order to fully exploit the scientific potential of the X-ray data. The design-driving science of eROSITA is the detection of very large samples (~10^5 objects) of galaxy clusters out to redshifts z>1, in order to study the large scale structure in the Universe, test and characterize cosmological models including Dark Energy. eROSITA is also expected to yield a sample of around 3 millions Active Galactic Nuclei, including both obscured and un-obscured objects, providing a unique view of the evolution of supermassive black holes within the emerging cosmic structure. The survey will also provide new insights into a wide range of astrophysical phenomena, including accreting binaries, active stars and diffuse emission within the Galaxy, as well as solar system bodies that emit X-rays via the charge exchange process. Finally, such a deep imaging survey at high spectral resolution, with its scanning strategy sensitive to a range of variability timescales from tens of seconds to years, will undoubtedly open up a vast discovery space for the study of rare, unpredicted, or unpredictable high-energy astrophysical phenomena. In this living document we present a comprehensive description of the main scientific goals of the mission, with strong emphasis on the early survey phases.Comment: 84 Pages, 52 Figures. Published online as MPE document. Edited by S. Allen. G. Hasinger and K. Nandra. Few minor corrections (typos) and updated reference

    Accelerator experiments with soft protons and hyper-velocity dust particles: application to ongoing projects of future X-ray missions

    Full text link
    We report on our activities, currently in progress, aimed at performing accelerator experiments with soft protons and hyper-velocity dust particles. They include tests of different types of X-ray detectors and related components (such as filters) and measurements of scattering of soft protons and hyper-velocity dust particles off X-ray mirror shells. These activities have been identified as a goal in the context of a number of ongoing space projects in order to assess the risk posed by environmental radiation and dust and qualify the adopted instrumentation with respect to possible damage or performance degradation. In this paper we focus on tests for the Silicon Drift Detectors (SDDs) used aboard the LOFT space mission. We use the Van de Graaff accelerators at the University of T\"ubingen and at the Max Planck Institute for Nuclear Physics (MPIK) in Heidelberg, for soft proton and hyper-velocity dust tests respectively. We present the experimental set-up adopted to perform the tests, status of the activities and some very preliminary results achieved at present time.Comment: Proceedings of SPIE, Vol. 8443, Paper No. 8443-24, 201

    ART-XC: A Medium-energy X-ray Telescope System for the Spectrum-R-Gamma Mission

    Get PDF
    The ART-XC instrument is an X-ray grazing-incidence telescope system in an ABRIXAS-type optical configuration optimized for the survey observational mode of the Spectrum-RG astrophysical mission which is scheduled to be launched in 2011. ART-XC has two units, each equipped with four identical X-ray multi-shell mirror modules. The optical axes of the individual mirror modules are not parallel but are separated by several degrees to permit the four modules to share a single CCD focal plane detector, 1/4 of the area each. The 450-micron-thick pnCCD (similar to the adjacent eROSITA telescope detector) will allow detection of X-ray photons up to 15 keV. The field of view of the individual mirror module is about 18 x 18 arcminutes(exp 2) and the sensitivity of the ART-XC system for 4 years of survey will be better than 10(exp -12) erg s(exp -1) cm(exp -2) over the 4-12 keV energy band. This will allow the ART-XC instrument to discover several thousand new AGNs

    The Scientific Performance of the Microchannel X-ray Telescope on board the SVOM Mission

    Full text link
    The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a "Lobster-Eye" optical design to be flown on Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length ~ 1.15 m) and light (< 42 kg) instrument, sensitive in the 0.2--10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 micron pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite.Comment: 22 pages, 12 figures, accepted for publication in Experimental Astronom

    Mitigation strategies against radiation-induced background for space astronomy missions

    Get PDF
    The Advanced Telescope for High ENergy Astrophysics (ATHENA) mission is a major upcoming space-based X-ray observatory due to be launched in 2028 by ESA, with the purpose of mapping the early universe and observing black holes. Background radiation is expected to constitute a large fraction of the total system noise in the Wide Field Imager (WFI) instrument on ATHENA, and designing an effective system to reduce the background radiation impacting the WFI will be crucial for maximising its sensitivity. Significant background sources are expected to include high energy protons, X-ray fluorescence lines, `knock-on' electrons and Compton electrons. Due to the variety of the different background sources, multiple shielding methods may be required to achieve maximum sensitivity in the WFI. These techniques may also be of great interest for use in future space-based X-ray experiments. Simulations have been developed to model the effect of a graded-Z shield on the X-ray fluorescence background. In addition the effect of a 90nm optical blocking filter on the secondary electron background has been investigated and shown to modify the requirements of any secondary electron shielding that is to be used
    corecore