42 research outputs found

    LLM-CompDroid: Repairing Configuration Compatibility Bugs in Android Apps with Pre-trained Large Language Models

    Full text link
    XML configurations are integral to the Android development framework, particularly in the realm of UI display. However, these configurations can introduce compatibility issues (bugs), resulting in divergent visual outcomes and system crashes across various Android API versions (levels). In this study, we systematically investigate LLM-based approaches for detecting and repairing configuration compatibility bugs. Our findings highlight certain limitations of LLMs in effectively identifying and resolving these bugs, while also revealing their potential in addressing complex, hard-to-repair issues that traditional tools struggle with. Leveraging these insights, we introduce the LLM-CompDroid framework, which combines the strengths of LLMs and traditional tools for bug resolution. Our experimental results demonstrate a significant enhancement in bug resolution performance by LLM-CompDroid, with LLM-CompDroid-GPT-3.5 and LLM-CompDroid-GPT-4 surpassing the state-of-the-art tool, ConfFix, by at least 9.8% and 10.4% in both Correct and Correct@k metrics, respectively. This innovative approach holds promise for advancing the reliability and robustness of Android applications, making a valuable contribution to the field of software development

    The value of diffusion kurtosis imaging, diffusion weighted imaging and 18F-FDG PET for differentiating benign and malignant solitary pulmonary lesions and predicting pathological grading

    Get PDF
    ObjectiveTo explore the value of PET/MRI, including diffusion kurtosis imaging (DKI), diffusion weighted imaging (DWI) and positron emission tomography (PET), for distinguishing between benign and malignant solitary pulmonary lesions (SPLs) and predicting the histopathological grading of malignant SPLs.Material and methodsChest PET, DKI and DWI scans of 73 patients with SPL were performed by PET/MRI. The apparent diffusion coefficient (ADC), mean diffusivity (MD), mean kurtosis (MK), maximum standard uptake value (SUVmax), metabolic total volume (MTV) and total lesion glycolysis (TLG) were calculated. Student’s t test or the Mann–Whitney U test was used to analyze the differences in parameters between groups. Receiver operating characteristic (ROC) curves were used to evaluate the diagnostic efficacy. Logistic regression analysis was used to evaluate independent predictors.ResultsThe MK and SUVmax were significantly higher, and the MD and ADC were significantly lower in the malignant group (0.59 ± 0.13, 10.25 ± 4.20, 2.27 ± 0.51[×10-3 mm2/s] and 1.35 ± 0.33 [×10-3 mm2/s]) compared to the benign group (0.47 ± 0.08, 5.49 ± 4.05, 2.85 ± 0.60 [×10-3 mm2/s] and 1.67 ± 0.33 [×10-3 mm2/s]). The MD and ADC were significantly lower, and the MTV and TLG were significantly higher in the high-grade malignant SPLs group (2.11 ± 0.51 [×10-3 mm2/s], 1.35 ± 0.33 [×10-3 mm2/s], 35.87 ± 42.24 and 119.58 ± 163.65) than in the non-high-grade malignant SPLs group (2.46 ± 0.46 [×10-3 mm2/s], 1.67 ± 0.33[×10-3 mm2/s], 20.17 ± 32.34 and 114.20 ± 178.68). In the identification of benign and malignant SPLs, the SUVmax and MK were independent predictors, the AUCs of the combination of SUVmax and MK, SUVmax, MK, MD, and ADC were 0.875, 0.787, 0.848, 0.769, and 0.822, respectively. In the identification of high-grade and non-high-grade malignant SPLs, the AUCs of MD, ADC, MTV, and TLG were 0.729, 0.680, 0.693, and 0.711, respectively.ConclusionDWI, DKI, and PET in PET/MRI are all effective methods to distinguish benign from malignant SPLs, and are also helpful in evaluating the pathological grading of malignant SPLs

    In vitro anti-Helicobacter pylori activity and the underlining mechanism of an empirical herbal formula – Hezi Qingyou

    Get PDF
    BackgroundHelicobacter pylori (H. pylori) is thought to primarily colonize the human stomach and lead to various gastrointestinal disorders, such as gastritis and gastric cancer. Currently, main eradication treatment is triple or quadruple therapy centered on antibiotics. Due to antibiotic resistance, the eradication rate of H. pylori is decreasing gradually. Therefore, searching for anti-H. pylori drugs from herbal sources has become a strategy for the treatment. Our team proposed a Hezi Qingyou Formula (HZQYF), composed of Chebulae Fructus, Ficus hirta Vahl and Cloves, and studied its anti-H. pylori activity and mechanism.MethodsChemical components of HZQYF were studied using UHPLC–MS/MS and HPLC. Broth microdilution method and agar dilution method were used to evaluate HZQYF’s antibacterial activity. The effects of HZQYF on expression of adhesion genes (alpA, alpB, babA), urease genes (ureE, ureF), and flagellar genes (flaA, flaB) were explored using Reverse Transcription-quantitative Polymerase Chain Reaction (RT-qPCR) technology. Effects on morphology and permeability of the extracellular membrane were studied using scanning electron microscopy (SEM) and N-phenylnaphthalen-1-amine (NPN) uptake. Effect on urease activity was studied using a urease kinetics analysis in vitro. Immunofluorescence staining method was used to examine the effect on adhesion. Western blot was used to examine the effect on cagA protein.ResultsMinimum inhibitory concentration (MIC) values of the formula against H. pylori clinical strains and standard strains were 80–160 μg/mL, and minimum bactericidal concentration (MBC) values were 160–320 μg/mL. The formula could down-regulate the expression of adhesion genes (alpA, alpB, babA), urease genes (ureE, ureF) and flagellar genes (flaA, flaB), change the morphology of H. pylori, increase its extracellular membrane permeability, and decrease its urease activity.ConclusionPresent studies confirmed that HZQYF had promising in vitro anti-H. pylori activities and demonstrated its possible mechanism of action by down-regulating the bacterial adhesion, urease, and flagellar gene expression, which provided scientific bases for further clinical investigations

    One-stop stroke management platform reduces workflow times in patients receiving mechanical thrombectomy

    Get PDF
    Background and purposeClinical outcome in patients who received thrombectomy treatment is time-dependent. The purpose of this study was to evaluate the efficacy of the one-stop stroke management (OSSM) platform in reducing in-hospital workflow times in patients receiving thrombectomy compared with the traditional model.MethodsThe data of patients who received thrombectomy treatment through the OSSM platform and traditional protocol transshipment pathway were retrospectively analyzed and compared. The treatment-related time interval and the clinical outcome of the two groups were also assessed and compared. The primary efficacy endpoint was the time from door to groin puncture (DPT).ResultsThere were 196 patients in the OSSM group and 210 patients in the control group, in which they were treated by the traditional approach. The mean DPT was significantly shorter in the OSSM group than in the control group (76 vs. 122 min; P < 0.001). The percentages of good clinical outcomes at the 90-day time point of the two groups were comparable (P = 0.110). A total of 121 patients in the OSSM group and 124 patients in the control group arrived at the hospital within 360 min from symptom onset. The mean DPT and time from symptom onset to recanalization (ORT) were significantly shorter in the OSSM group than in the control group. Finally, a higher rate of good functional outcomes was achieved in the OSSM group than in the control group (53.71 vs. 40.32%; P = 0.036).ConclusionCompared to the traditional transfer model, the OSSM transfer model significantly reduced the in-hospital delay in patients with acute stroke receiving thrombectomy treatment. This novel model significantly improved the clinical outcomes of patients presenting within the first 6 h after symptom onset

    Chlorophyllin Modulates Gut Microbiota and Inhibits Intestinal Inflammation to Ameliorate Hepatic Fibrosis in Mice

    Get PDF
    Liver fibrosis is an abnormal wound healing response and a common consequence of chronic liver diseases from infection or alcohol/xenobiotic exposure. At the cellular level, liver fibrosis is mediated by trans-differentiation of hepatic stellate cells (HSCs), which is driven by persistent hepatic and systemic inflammation. However, impaired enterohepatic circulation and gut dysbiosis may indirectly contribute to the liver fibrogenesis. The composition of the gut microbiota depends on diet composition and host factors. In this study, we examined chlorophyllin, derived from green pigment chlorophyll, on gut microbiota, the intestinal mucosal barrier, and liver fibrosis. BALB/c mice received carbon tetrachloride through intraperitoneal injection to induce liver fibrosis and chlorophyllin was administrated in drinking water. The effects of chlorophyllin on liver fibrosis were evaluated for (1) survival rate, (2) hepatic morphologic analysis, (3) inflammatory factors in both the small intestine and liver, and (4) gut microbiota. Our results indicate that oral administration of chlorophyllin could attenuate intestinal and hepatic inflammation and ameliorate liver fibrosis. Importantly, oral administration of chlorophyllin promptly rebalanced the gut microbiota, exhibiting down-regulation of the phylum Firmicutes and up-regulation of the phylum Bacteroidetes. In vitro experiments on intestinal epithelial cells showed that chlorophyllin exposure could inhibit NF-ÎşB pathway via IKK-phosphorylation suppression. In conclusion, this study demonstrates potential application of chlorophyllin to regulate the intestinal microbiota and ameliorate hepatic fibrosis

    Nanomaterial-Assisted Signal Enhancement of Hybridization for DNA Biosensors: A Review

    Get PDF
    Detection of DNA sequences has received broad attention due to its potential applications in a variety of fields. As sensitivity of DNA biosensors is determined by signal variation of hybridization events, the signal enhancement is of great significance for improving the sensitivity in DNA detection, which still remains a great challenge. Nanomaterials, which possess some unique chemical and physical properties caused by nanoscale effects, provide a new opportunity for developing novel nanomaterial-based signal-enhancers for DNA biosensors. In this review, recent progress concerning this field, including some newly-developed signal enhancement approaches using quantum-dots, carbon nanotubes and their composites reported by our group and other researchers are comprehensively summarized. Reports on signal enhancement of DNA biosensors by non-nanomaterials, such as enzymes and polymer reagents, are also reviewed for comparison. Furthermore, the prospects for developing DNA biosensors using nanomaterials as signal-enhancers in future are also indicated
    corecore