4,142 research outputs found
Numerical Algebraic Geometry: A New Perspective on String and Gauge Theories
The interplay rich between algebraic geometry and string and gauge theories
has recently been immensely aided by advances in computational algebra.
However, these symbolic (Gr\"{o}bner) methods are severely limited by
algorithmic issues such as exponential space complexity and being highly
sequential. In this paper, we introduce a novel paradigm of numerical algebraic
geometry which in a plethora of situations overcomes these short-comings. Its
so-called 'embarrassing parallelizability' allows us to solve many problems and
extract physical information which elude the symbolic methods. We describe the
method and then use it to solve various problems arising from physics which
could not be otherwise solved.Comment: 36 page
Therapeutic blockade of granulocyte macrophage colony-stimulating factor in COVID-19-associated hyperinflammation: challenges and opportunities
The COVID-19 pandemic is a global public health crisis, with considerable mortality and morbidity exerting pressure on health-care resources, including critical care. An excessive host inflammatory response in a subgroup of patients with severe COVID-19 might contribute to the development of acute respiratory distress syndrome (ARDS) and multiorgan failure. Timely therapeutic intervention with immunomodulation in patients with hyperinflammation could prevent disease progression to ARDS and obviate the need for invasive ventilation. Granulocyte macrophage colony-stimulating factor (GM-CSF) is an immunoregulatory cytokine with a pivotal role in initiation and perpetuation of inflammatory diseases. GM-CSF could link T-cell-driven acute pulmonary inflammation with an autocrine, self-amplifying cytokine loop leading to monocyte and macrophage activation. This axis has been targeted in cytokine storm syndromes and chronic inflammatory disorders. Here, we consider the scientific rationale for therapeutic targeting of GM-CSF in COVID-19-associated hyperinflammation. Since GM-CSF also has a key role in homoeostasis and host defence, we discuss potential risks associated with inhibition of GM-CSF in the context of viral infection and the challenges of doing clinical trials in this setting, highlighting in particular the need for a patient risk-stratification algorithm
Ocular inflammatory disease and ocular tuberculosis in a cohort of patients co-infected with HIV and multidrug-resistant tuberculosis in Mumbai, India: a cross-sectional study.
The prevalence and the patterns of ocular inflammatory disease and ocular tuberculosis (TB) are largely undocumented among Multidrug Resistant TB (MDR-TB) patients co-infected with Human Immunodeficiency Virus (HIV) and on antituberculosis and antiretroviral therapy (ART)
Pancreatitis with an unusual fatal complication following endoscopic retrograde cholangiopancreaticography: a case report
<p>Abstract</p> <p>Introduction</p> <p>Endoscopic retrograde cholangiopancreaticography has been the treatment of choice for stones in the common bile duct. Although the procedure is usually safe, procedure-related complications do occur.</p> <p>Case presentation</p> <p>A case of pancreatitis following endoscopic retrograde cholangiopancreaticography is described in a 55-year-old woman. After an uneventful recovery the patient's condition deteriorated rapidly 16 days after the endoscopic retrograde cholangiopancreaticography, and the patient died within 1 hour. Post-mortem examination revealed massive intrapulmonary fat embolism. The complications of endoscopic retrograde cholangiopancreaticography and pancreatitis are described.</p> <p>Conclusion</p> <p>Fat embolism can occur after the remission of pancreatitis and pancreatic necrosis may be overlooked on contrast-enhanced computed tomography scanning.</p
Numerical elimination and moduli space of vacua
We propose a new computational method to understand the vacuum moduli space of (supersymmetric) field theories. By combining numerical algebraic geometry (NAG) and elimination theory, we develop a powerful, efficient, and parallelizable algorithm toextract important information such as the dimension, branch structure, Hilbert series and subsequent operator counting, as well as variation according to coupling constants and mass parameters. We illustrate this method on a host of examples from gauge theory, string theory, and algebraic geometry
Recommended from our members
Estimating survival in patients with gastrointestinal cancers and brain metastases: An update of the graded prognostic assessment for gastrointestinal cancers (GI-GPA).
BackgroundPatients with gastrointestinal cancers and brain metastases (BM) represent a unique and heterogeneous population. Our group previously published the Diagnosis-Specific Graded Prognostic Assessment (DS-GPA) for patients with GI cancers (GI-GPA) (1985-2007, nβ―=β―209). The purpose of this study is to update the GI-GPA based on a larger contemporary database.MethodsAn IRB-approved consortium database analysis was performed using a multi-institutional (18), multi-national (3) cohort of 792 patients with gastrointestinal (GI) cancers, with newly-diagnosed BM diagnosed between 1/1/2006 and 12/31/2017. Survival was measured from date of first treatment for BM. Multiple Cox regression was used to select and weight prognostic factors in proportion to their hazard ratios. These factors were incorporated into the updated GI-GPA.ResultsMedian survival (MS) varied widely by primary site and other prognostic factors. Four significant factors (KPS, age, extracranial metastases and number of BM) were used to formulate the updated GI-GPA. Overall MS for this cohort remains poor; 8β―months. MS by GPA was 3, 7, 11 and 17β―months for GPA 0-1, 1.5-2, 2.5-3.0 and 3.5-4.0, respectively. >30% present in the worst prognostic group (GI-GPA of β€1.0).ConclusionsBrain metastases are not uncommon in GI cancer patients and MS varies widely among them. This updated GI-GPA index improves our ability to estimate survival for these patients and will be useful for therapy selection, end-of-life decision-making and stratification for future clinical trials. A user-friendly, free, on-line app to calculate the GPA score and estimate survival for an individual patient is available at brainmetgpa.com
Evidence That Aberrant Expression of Tissue Transglutaminase Promotes Stem Cell Characteristics in Mammary Epithelial Cells
Cancer stem cells (CSCs) or tumor initiating cells (TICs) make up only a small fraction of total tumor cell population, but recent evidence suggests that they are responsible for tumor initiation and the maintenance of tumor growth. Whether CSCs/TICs originate from normal stem cells or result from the dedifferentiation of terminally differentiated cells remains unknown. Here we provide evidence that sustained expression of the proinflammatory protein tissue transglutaminase (TG2) confers stem cell like properties in non-transformed and transformed mammary epithelial cells. Sustained expression of TG2 was associated with increase in CD44high/CD24low/- subpopulation, increased ability of cells to form mammospheres, and acquisition of self-renewal ability. Mammospheres derived from TG2-transfected mammary epithelial cells (MCF10A) differentiated into complex secondary structures when grown in Matrigel cultures. Cells in these secondary structures differentiated into Muc1-positive (luminal marker) and integrin Ξ±6-positive (basal marker) cells in response to prolactin treatment. Highly aggressive MDA-231 and drug-resistant MCF-7/RT breast cancer cells, which express high basal levels of TG2, shared many traits with TG2-transfected MCF10A stem cells but unlike MCF10A-derived stem cells they failed to form the secondary structures and to differentiate into Muc1-positive luminal cells when grown in Matrigel culture. Downregulation of TG2 attenuated stem cell properties in both non-transformed and transformed mammary epithelial cells. Taken together, these results suggested a new function for TG2 and revealed a novel mechanism responsible for promoting the stem cell characteristics in adult mammary epithelial cells
Molecular mechanisms of drug resistance in natural Leishmania populations vary with genetic background
The evolution of drug-resistance in pathogens is a major global health threat. Elucidating the molecular basis of pathogen drug-resistance has been the focus of many studies but rarely is it known whether a drug-resistance mechanism identified is universal for the studied pathogen; it has seldom been clarified whether drug-resistance mechanisms vary with the pathogen's genotype. Nevertheless this is of critical importance in gaining an understanding of the complexity of this global threat and in underpinning epidemiological surveillance of pathogen drug resistance in the field. This study aimed to assess the molecular and phenotypic heterogeneity that emerges in natural parasite populations under drug treatment pressure. We studied lines of the protozoan parasite Leishmania (L.) donovani with differential susceptibility to antimonial drugs; the lines being derived from clinical isolates belonging to two distinct genetic populations that circulate in the leishmaniasis endemic region of Nepal. Parasite pathways known to be affected by antimonial drugs were characterised on five experimental levels in the lines of the two populations. Characterisation of DNA sequence, gene expression, protein expression and thiol levels revealed a number of molecular features that mark antimonial-resistant parasites in only one of the two populations studied. A final series of in vitro stress phenotyping experiments confirmed this heterogeneity amongst drug-resistant parasites from the two populations. These data provide evidence that the molecular changes associated with antimonial-resistance in natural Leishmania populations depend on the genetic background of the Leishmania population, which has resulted in a divergent set of resistance markers in the Leishmania populations. This heterogeneity of parasite adaptations provides severe challenges for the control of drug resistance in the field and the design of molecular surveillance tools for widespread applicability
- β¦