23,939 research outputs found

    The correspondence between Tracy-Widom (TW) and Adler-Shiota-van Moerbeke (ASvM) approaches in random matrix theory: the Gaussian case

    Full text link
    Two approaches (TW and ASvM) to derivation of integrable differential equations for random matrix probabilities are compared. Both methods are rewritten in such a form that simple and explicit relations between all TW dependent variables and τ\tau-functions of ASvM are found, for the example of finite size Gaussian matrices. Orthogonal function systems and Toda lattice are seen as the core structure of both approaches and their relationship.Comment: 20 pages, submitted to Journal of Mathematical Physic

    Calculation of some determinants using the s-shifted factorial

    Full text link
    Several determinants with gamma functions as elements are evaluated. This kind of determinants are encountered in the computation of the probability density of the determinant of random matrices. The s-shifted factorial is defined as a generalization for non-negative integers of the power function, the rising factorial (or Pochammer's symbol) and the falling factorial. It is a special case of polynomial sequence of the binomial type studied in combinatorics theory. In terms of the gamma function, an extension is defined for negative integers and even complex values. Properties, mainly composition laws and binomial formulae, are given. They are used to evaluate families of generalized Vandermonde determinants with s-shifted factorials as elements, instead of power functions.Comment: 25 pages; added section 5 for some examples of application

    Probability density of determinants of random matrices

    Full text link
    In this brief paper the probability density of a random real, complex and quaternion determinant is rederived using singular values. The behaviour of suitably rescaled random determinants is studied in the limit of infinite order of the matrices

    Mesoscopic conductance fluctuations in a coupled quantum dot system

    Full text link
    We study the transport properties of an Aharonov-Bohm ring containing two quantum dots. One of the dots has well-separated resonant levels, while the other is chaotic and is treated by random matrix theory. We find that the conductance through the ring is significantly affected by mesoscopic fluctuations. The Breit-Wigner resonant peak is changed to an antiresonance by increasing the ratio of the level broadening to the mean level spacing of the random dot. The asymmetric Fano form turns into a symmetric one and the resonant peak can be controlled by magnetic flux. The conductance distribution function clearly shows the influence of strong fluctuations.Comment: 4 pages, 4 figures; revised for publicatio

    Does dynamics reflect topology in directed networks?

    Full text link
    We present and analyze a topologically induced transition from ordered, synchronized to disordered dynamics in directed networks of oscillators. The analysis reveals where in the space of networks this transition occurs and its underlying mechanisms. If disordered, the dynamics of the units is precisely determined by the topology of the network and thus characteristic for it. We develop a method to predict the disordered dynamics from topology. The results suggest a new route towards understanding how the precise dynamics of the units of a directed network may encode information about its topology.Comment: 7 pages, 4 figures, Europhysics Letters, accepte

    Generalization of the Poisson kernel to the superconducting random-matrix ensembles

    Full text link
    We calculate the distribution of the scattering matrix at the Fermi level for chaotic normal-superconducting systems for the case of arbitrary coupling of the scattering region to the scattering channels. The derivation is based on the assumption of uniformly distributed scattering matrices at ideal coupling, which holds in the absence of a gap in the quasiparticle excitation spectrum. The resulting distribution generalizes the Poisson kernel to the nonstandard symmetry classes introduced by Altland and Zirnbauer. We show that unlike the Poisson kernel, our result cannot be obtained by combining the maximum entropy principle with the analyticity-ergodicity constraint. As a simple application, we calculate the distribution of the conductance for a single-channel chaotic Andreev quantum dot in a magnetic field.Comment: 7 pages, 2 figure

    Two photon annihilation operators and squeezed vacuum

    Get PDF
    Inverses of the harmonic oscillator creation and annihilation operators by their actions on the number states are introduced. Three of the two photon annihilation operators, viz., a(sup +/-1)a, aa(sup +/-1), and a(sup 2), have normalizable right eigenstates with nonvanishing eigenvalues. The eigenvalue equation of these operators are discussed and their normalized eigenstates are obtained. The Fock state representation in each case separates into two sets of states, one involving only the even number states while the other involving only the odd number states. It is shown that the even set of eigenstates of the operator a(sup +/-1)a is the customary squeezed vacuum S(sigma) O greater than

    Density of critical points for a Gaussian random function

    Full text link
    Critical points of a scalar quantitiy are either extremal points or saddle points. The character of the critical points is determined by the sign distribution of the eigenvalues of the Hessian matrix. For a two-dimensional homogeneous and isotropic random function topological arguments are sufficient to show that all possible sign combinations are equidistributed or with other words, the density of the saddle points and extrema agree. This argument breaks down in three dimensions. All ratios of the densities of saddle points and extrema larger than one are possible. For a homogeneous Gaussian random field one finds no longer an equidistribution of signs, saddle points are slightly more frequent.Comment: 11 pages 1 figure, changes in list of references, corrected typo
    corecore