10 research outputs found

    Reorientation-effect measurement of the first 2+ state in 12C : Confirmation of oblate deformation

    Get PDF
    A Coulomb-excitation reorientation-effect measurement using the TIGRESS γ−ray spectrometer at the TRIUMF/ISAC II facility has permitted the determination of the 〈21 +‖E2ˆ‖21 +〉 diagonal matrix element in 12C from particle−γ coincidence data and state-of-the-art no-core shell model calculations of the nuclear polarizability. The nuclear polarizability for the ground and first-excited (21 +) states in 12C have been calculated using chiral NN N4LO500 and NN+3NF350 interactions, which show convergence and agreement with photo-absorption cross-section data. Predictions show a change in the nuclear polarizability with a substantial increase between the ground state and first excited 21 + state at 4.439 MeV. The polarizability of the 21 + state is introduced into the current and previous Coulomb-excitation reorientation-effect analyses of 12C. Spectroscopic quadrupole moments of QS(21 +)=+0.053(44) eb and QS(21 +)=+0.08(3) eb are determined, respectively, yielding a weighted average of QS(21 +)=+0.071(25) eb, in agreement with recent ab initio calculations. The present measurement confirms that the 21 + state of 12C is oblate and emphasizes the important role played by the nuclear polarizability in Coulomb-excitation studies of light nuclei

    Seniority structure of 136^{136}Xe82_{82}

    Get PDF
    International audienceThe level structure of the N=82 nucleus Xe136 was studied with the inelastic neutron scattering reaction followed by γ-ray detection. A number of the spins and parities were reassigned, and many level lifetimes were determined for the first time using the Doppler-shift attenuation method. New shell-model calculations were also performed using both the full Z=50–82 model space, and a reduced model space including only the 1d5/2 and 0g7/2 orbitals. This new information characterizing Xe136 was used to identify the seniority structure of the low-lying levels and to assign (π0g7/2)υ=04, (π0g7/2)υ=24, (π0g7/2)υ=44, (π1d5/2)(π0g7/2)υ=13, and (π1d5/2)2(π0g7/2)υ=02 configurations to describe all observed states below 2.8 MeV
    corecore