25 research outputs found

    Socio-hydrological modelling to assess reliability of an urban water system under formal-informal supply dynamics

    Get PDF
    Increasing water scarcity in developing world cities combined with poor performance of water supply systems has led to an increasing reliance on informal water supply systems. Although the availability of informal supply provides a coping mechanism that enables water consumers to be resilient to failures in water supply, the longer-term effects on formal water supply systems (FWSS) are uncertain, with a potential reduction of tariff recovery (RT), and in turn a service provider’s financial sustainability. This motivates an analysis of the coevolving dynamics and feedbacks involved in water systems where formal and informal components co-exist. Investigating Hyderabad, Pakistan as a case study, a dynamic socio-hydrologic system model is built, comprised of a formal system’s water and fund balance, consumer behaviour and infrastructure conditions. Simulations are executed on a monthly basis at a household level and for a 100-year period (2007–2107) using data available from years 2007–2017. Demand shift to informal is observed to be weakly associated with lower recovery rates, with household income as a major predictor. The FWSS’s financial balance, predominantly driven by infrastructure condition, appears to be less sensitive to recovery of a tariff to generate sufficient revenue

    System archetypes underlying formal-informal urban water supply dynamics

    Get PDF
    Contrary to developed countries, developing countries have been observed to have an increased reliance on a diversity of water supply options to meet their daily demands, where formal supply systems are incapable of fulfilling the daily needs of consumers. In filling a demand-supply gap, informal supply systems are increasingly being associated with issues of long-term sustainability, higher consumer cost, and inequity. Emerging formal-informal dynamics in developing countries require a thorough understanding of complex human-water interactions for policy direction, in order to best support the advancement of urban water sustainability. Accordingly, system archetypes offer a platform to explain the behaviors of complex systems. This paper identifies common system archetypes that define urban waterscapes in the developing world. In this way, Causal Loop Diagrams (CLDs) are used to present relationships and identify common archetypes that define the complexity of urban water supply systems in Hyderabad, Pakistan. These archetypes include ‘fixes that fail’, ‘shifting the burden’, ‘limits to growth/success’ and ‘growth and underinvestment’. These archetypes demonstrate that increases in formal infrastructure capacity and the number of informal suppliers to increase supply reliability are symptomatic solutions, restrained by financial and technical resources, and thus have unintended consequences. Further, a number of policy instruments are discussed as leverage points to achieve financial sustainability of formal systems. This paper emphasizes the need of a policy framework for informal supply system in national and regional water policies to ensure its service reliability as a short to medium term solution

    A protocol to develop shared socio-economic pathways for European agriculture

    Get PDF
    Moving towards a more sustainable future requires concerted actions, particularly in the context of global climate change. Integrated assessments of agricultural systems (IAAS) are considered valuable tools to provide sound information for policy and decision-making. IAAS use storylines to define socio-economic and environmental framework assumptions. While a set of qualitative global storylines, known as the Shared Socio-economic Pathways (SSPs), is available to inform integrated assessments at large scales, their spatial resolution and scope is insufficient for regional studies in agriculture. We present a protocol to operationalize the development of Shared Socio-economic Pathways for European agriculture – Eur-Agri-SSPs – to support IAAS. The proposed design of the storyline development process is based on six quality criteria: plausibility, vertical and horizontal consistency, salience, legitimacy, richness and creativity. Trade-offs between these criteria may occur. The process is science-driven and iterative to enhance plausibility and horizontal consistency. A nested approach is suggested to link storylines across scales while maintaining vertical consistency. Plausibility, legitimacy, salience, richness and creativity shall be stimulated in a participatory and interdisciplinary storyline development process. The quality criteria and process design requirements are combined in the protocol to increase conceptual and methodological transparency. The protocol specifies nine working steps. For each step, suitable methods are proposed and the intended level and format of stakeholder engagement are discussed. A key methodological challenge is to link global SSPs with regional perspectives provided by the stakeholders, while maintaining vertical consistency and stakeholder buy-in. We conclude that the protocol facilitates systematic development and evaluation of storylines, which can be transferred to other regions, sectors and scales and supports inter-comparisons of IAAS

    Shared Socio-economic Pathways for European agriculture and food systems: the Eur-Agri-SSPs

    Get PDF
    Scenarios describe plausible and internally consistent views of the future. They can be used by scientists, policymakers and entrepreneurs to explore the challenges of global environmental change given an appropriate level of spatial and sectoral detail and systematic development. We followed a nine-step protocol to extend and enrich a set of global scenarios – the Shared Socio-economic Pathways (SSPs) – providing regional and sectoral detail for European agriculture and food systems using a one-to-one nesting participatory approach. The resulting five Eur-Agri-SSPs are titled (1) Agriculture on sustainable paths, (2) Agriculture on established paths, (3) Agriculture on separated paths, (4) Agriculture on unequal paths, and (5) Agriculture on high-tech paths. They describe alternative plausible qualitative evolutions of multiple drivers of particular importance and high uncertainty for European agriculture and food systems. The added value of the protocol-based storyline development process lies in the conceptual and methodological transparency and rigor; the stakeholder driven selection of the storyline elements; and consistency checks within and between the storylines. Compared to the global SSPs, the five Eur-Agri-SSPs provide rich thematic and regional details and are thus a solid basis for integrated assessments of agriculture and food systems and their response to future socio-economic and environmental change

    Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches

    Get PDF
    Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly

    Soil nitrate-N and plant nitrogen distributions under different tillage practices

    No full text
    A two year study was conducted on the Macdonald Campus Farm on a 2.4 ha site of shallow St. Amble loamy sand cropped to corn (Zea mays L.). Three types of tillage practice (conventional tillage, reduced tillage, and no-till) were combined with 2 residue levels (with and without) in a randomized complete block design. The effect of these practices on NO 3--N distribution at 0--50 cm in the soil profile, and on plant N uptake were studied. Organic matter, pH, bulk density, and soil moisture contents were also monitored. Residues were found to have a greater influence on soil NO3--N transformations (mineralization and immobilization), than tillage. In July 1996 residues suppressed NO3--N levels in reduced tillage (RT), but increased NO3--N levels in conventional tillage (CT). Residues initially increased N03--N levels in no-till (NT), but a few weeks later caused a sharp decline in NO 3--N levels in NT. In August 1996, RT and NT treatments without residue were found to have much greater concentrations of NO 3--N than those with residue. The effect of N suppression caused by residues was observed in Spring 1996, July 1996, August 1996, and August 1997. Reduced tillage demonstrated less NO 3--N fluctuation than the other tillage treatments. Wheel tracked rows had up to 20 times more NO3--N at 0--15 cm than the non wheel tracked rows, caused by the uneven distribution of N fertilizer. However, high NO3--N levels in the wheel tracked rows decreased to levels comparable with those in non fertilized (non wheel track) rows at 50 cm. Corn yields were not affected by tillage or residue treatments, neither were they influenced by the percentage of tissue N content. (Abstract shortened by UMI.

    Scenarios and implications of land use and climate change on water quality in mesoscale agricultural watersheds

    No full text
    A comparative study in two mesoscale, agricultural watersheds located in mid-latitude, developed regions (Altmühl River, Germany and in Pike River, Canada) investigated potential future land use change and climate change impacts on surface water quality. The two watersheds provided a unique opportunity to compare potential impacts of change in similar physical and climatological regions, yet under different political settings related to agricultural policies as well as water quality management and protection. The objectives of the research were to develop agricultural land use scenarios to apply to a hydrological model simultaneously with climate change simulations. This modelling framework allowed quantifying these combined impacts on streamflow, sediment loads, nitrate-nitrogen loads and concentrations, as well as total phosphorus loads and concentrations to the 2050 time horizon. The impacts of climate change were evaluated alone and then with land use change. Overall, the quality of surface water simulated in both watersheds will be deteriorated according to environmental standards set by the ministries by 2050 due to higher mean annual nutrient loads transported into the rivers. Climate change impacts were greater than land use change impacts; however land use change can have an important influence on water quality, depending on the magnitude of crop changes taking place. Field-level adaptation strategies in the Pike River were simulated to determine the extent of reducing the combined impacts of land use and climate change. The strategies were able to mitigate the combined impacts, and also to improve the quality of surface water compared to the in-stream nutrient concentrations in the reference simulation.In both watersheds, it was determined that the combined interaction between climate change and land use change in the hydrological model are non-linear. Examining the combined impacts are necessary to determine potential alterations in water quality in a basin since the direction and the magnitude are not predictable from the individual changes alone.Une étude comparative de deux basins versants de mésoéchelle situés dans les latitudes moyennes, dans des régions développées (la rivière Altmühl en Allemagne, et le Rivière-aux-Brochets (Pike River) au Canada) a examiné les impacts des changements d'utilisation des terres future ainsi que les changements climatiques futurs sur la qualité des eaux de surface. Les deux bassins ont fourni une occasion unique de comparer les impacts potentiels des changements dans les régions physiquement et climatologiquement similaires, mais dans différents contextes politiques liés à l'agriculture et à la gestion et à la protection de la qualité de l'eau. Les objectifs de la recherche étaient de développer des scénarios d'utilisation des terres agricoles pour appliquer à un modèle hydrologique, simultanément avec des simulations climatiques futures. Ce cadre de modélisation a permis de quantifier à l'horizon 2050 les effets combinés sur : le débit, les charges de sédiments, les charges et les concentrations d'azote-nitrate, ainsi que les charges et les concentrations de phosphore total. Les impacts du changement climatique ont été évalués seuls, et ensuite avec les scenarios d'utilisation des terres agricoles. Dans l'ensemble, la qualité de l'eau de surface simulée dans les deux bassins versants se détériorera en 2050 en raison de charges moyennes annuelles élevés d'éléments nutritifs transportées vers la rivière. Les impacts du changement climatique étaient plus grands que les effets de l'utilisation des terres; cependant l'utilisation des terres agricoles peut avoir une influence importante sur la qualité de l'eau, en fonction de l'ampleur des changements des cultures. Des stratégies d'adaptation au niveau des champs ont été simulées pour bassin versant de la Rivière-aux-Brochets afin de déterminer l'ampleur de la réduction des effets combinés de l'utilisation des terres agricoles et des changements climatiques. Les stratégies d'adaptation ont été en mesure d'atténuer les effets combinés, et aussi d'améliorer la qualité des eaux de surface par rapport aux concentrations de nutriments dans la rivière dans la simulation de référence. Dans les deux bassins versants, l'interaction des simulations du changement climatique combinée avec des scénarios de changement d'utilisation des terres agricoles dans le modèle hydrologique était unique et non-linéaire. Donc, examiner les effets combinés est primordial pour déterminer les modifications éventuelles à la qualité de l'eau dans un bassin puisque la direction et l'ampleur du changement ne sont pas prévisibles à partir des changements individuels

    Upstream water flow at Kotri barrage, Sindh Pakistan

    No full text
    The dataset contains the water flow data at Kotri barrage, Sindh Pakista
    corecore