203 research outputs found
Durability of biodegradable polymers for the conservation of cultural heritage
The use of polymers for conservation of cultural heritage is related to the possibility to slow down or stop natural deterioration which, in many cases, corresponds to stopping the entrance of liquid water and to favor spontaneous water vapor removal. Unfortunately, hydrophobicity is generally favored by surface roughness and thus competitive with transparency. It is therefore important to find an optimal balance hydrophobicity, transparency and durability (especially to photooxidation). However, polymers typically used for applications in this field come from non-renewable resources and are not biodegradable. In this work, the mechanical, structural, and optical properties of PLA, PBAT, and a PBAT/PLA blends, as well as surface properties and water vapor permeability, were investigated before and after exposure to UV irradiation, in order to evaluate their durability and suitability for conservation of cultural heritage
One-step electrodeposition of superhydrophobic coating on 316L stainless steel
Superhydrophobic coatings were fabricated through a one-step electrochemical process onto the surface of 316L stainless steel samples. The presence of hierarchical structures at micro/ nanoscale and manganese stearate into the coatings gave superhydrophobicity to the coating, with contact angle of ~160â—¦, and self-cleaning ability. Corrosion resistance of 316L samples was also assessed also after the electrodeposition process through Electrochemical Impedance Spectra recorded in an aqueous solution mimicking seawater condition
Effect of sodium bicarbonate treatment on the properties of sisal fibers and their geopolymer composites
Eco-friendly and cheap treatments based on the use of mildly alkaline solutions have been recently investigated to modify natural fibers, altering their surface and improving their compatibility mainly with polymer matrices. A challenge for the researchers is nowadays represented by the assessment of this kind of treatments as a viable approach also for geopolymer based composites. In such a context, this study presents a novel and sustainable approach for enhancing sisal fibers for geopolymer composites using a sodium bicarbonate (NaHCO3) treatment. While the treatment offers a greener alternative to conventional methods, its key advantage lies in achieving a balance between fiber properties. Although it slightly reduces raw fiber strength, the NaHCO3 treatment effectively removes impurities, promoting improved crystallinity and, more importantly, significantly enhances fiber surface roughness and homogeneity. This tailored surface modification fosters superior interfacial bonding with the geopolymer matrix, resulting in composites with significantly enhanced flexural toughness (82 %) – a critical property for construction materials – compared to those reinforced with untreated fibers. Flexural strength is also improved by (53 %). This work not only demonstrates the effectiveness of NaHCO3 treatment but also highlights its potential for developing high-performing, eco-friendly construction materials. A comprehensive evaluation, including three-point bending tests to assess toughness, validates this promising approach
Mechanical and thermal properties of insulating sustainable mortars with ampelodesmos mauritanicus and pennisetum setaceum plants as aggregates
The use of natural fibers in cement composites is a widening research field as their
application can enhance the mechanical and thermal behavior of cement mortars and limit their
carbon footprint. In this paper, two different wild grasses, i.e., Ampelodesmos mauritanicus, also
called diss, and Pennisetum setaceum, also known as crimson fountaingrass, are used as a source
of natural aggregates for cement mortars. The main purpose is to assess the possibility of using
the more invasive crimson fountaingrass in place of diss in cement-based vegetable concrete. The
two plant fibers have been characterized by means of scanning electron microscopy (SEM), helium
picnometry and thermogravimetric analysis. Moreover, the thermal conductivity of fiber panels has
been measured. Mortars samples have been prepared using untreated, boiled and Polyethylene glycol
4000 (PEG) treated fibers. The mechanical characterization has been performed by means of three
point bending and compression tests. Thermal conductivity and porosity have been measured to
characterize physical modification induced by fibers’ treatments. The results showed better thermal
and mechanical properties of diss fiber composites than fountaingrass one and that fiber treatments
lead to a reduction of the thermal insulation propertie
Rapid One-Step Fabrication of Graphene Oxide-Decorated Polycaprolactone Three-Dimensional Templates for Water Treatment
Coating of flexible substrates is crucial to prepare versatile, multifunctional materials. However, exploration of effective fabrication approaches is still a challenging issue, because the pathways generally proposed require time-consuming, multistep protocols. Here, we developed a one-pot process for decorating either pearl necklace-like or fibrous fluffy-like structures of polycaprolactone (PCL) with graphene oxide (GO) skin. PCL solutions were dry jet-wet electrosprayed or electrospun into a stirred liquid collector constituted by ethanol-containing GO nanoparticles. The stirred liquid collector enables the formation of 3D-structures, whose microarchitecture can be designed by controlling the rheological behavior of PCL solutions. Two molecular weights of PCL were used (45 or 80 kDa) with ensuing different viscosity, which determines the prevalent formation of beads or fibers. The presence of GO in the coagulation bath allows the polymeric structures to be rapidly wrapped by those nanoparticles. Graphenic coating endows these materials with the intriguing peculiarities of GO: PCL/GO nanocomposites displayed increments of elastic modulus ranging from 1250% (beads) to 3300% (fibers) with respect to the neat matrices and a change from hydrophobic to amphiphilic character. A potential application of such devices in water treatment was assessed in phenol removal. The results pointed out that PCL/GO scaffolds retain the same sorption capacity of GO nanoparticles, while bringing several advantages in terms of handling, robustness, and recyclability. The ease of control of the process, as well as its fastness and cost-effectiveness could open a wide range of scenarios, including sensors, energy, catalysis, biomedicine
Improved Cu2O/AZO Heterojunction by Inserting a Thin ZnO Interlayer Grown by Pulsed Laser Deposition
Cu2O/ZnO:Al (AZO) and Cu2O/ZnO/AZO heterojunctions have been deposited on glass substrates by a unique three-step pulsed laser deposition process. The structural, optical, and electrical properties of the oxide films were investigated before their implementation in the final device. X-ray diffraction analysis indicated that the materials were highly crystallized along the c-axis. All films were highly transparent in the visible region with enhanced electrical properties. Atomic force and scanning electron microscopies showed that the insertion of a ZnO layer between the Cu2O and AZO films in the heterojunction enhanced the average grain size and surface roughness. The heterojunctions exhibited remarkable diode behavior and good rectifying character with low leakage current under reverse bias. The presence of the ZnO interlayer film significantly reduced the parasitic and leakage currents across the barrier, improved the quality of the heterostructure, made the energy band between AZO and Cu2O layers smoother, and eliminated the possibility of interface recombination, leading to much longer electron lifetime
- …