284 research outputs found

    Navier-Stokes hydrodynamics of thermal collapse in a freely cooling granular gas

    Full text link
    We employ Navier-Stokes granular hydrodynamics to investigate the long-time behavior of clustering instability in a freely cooling dilute granular gas in two dimensions. We find that, in circular containers, the homogeneous cooling state (HCS) of the gas loses its stability via a sub-critical pitchfork bifurcation. There are no time-independent solutions for the gas density in the supercritical region, and we present analytical and numerical evidence that the gas develops thermal collapse unarrested by heat diffusion. To get more insight, we switch to a simpler geometry of a narrow-sector-shaped container. Here the HCS loses its stability via a transcritical bifurcation. For some initial conditions a time-independent inhomogeneous density profile sets in, qualitatively similar to that previously found in a narrow-channel geometry. For other initial conditions, however, the dilute gas develops thermal collapse unarrested by heat diffusion. We determine the dynamic scalings of the flow close to collapse analytically and verify them in hydrodynamic simulations. The results of this work imply that, in dimension higher than one, Navier-Stokes hydrodynamics of a dilute granular gas is prone to finite-time density blowups. This provides a natural explanation to the formation of densely packed clusters of particles in a variety of initially dilute granular flows.Comment: 18 pages, 19 figure

    Far-from-equilibrium Ostwald ripening in electrostatically driven granular powders

    Full text link
    We report the first experimental study of cluster size distributions in electrostatically driven granular submonolayers. The cluster size distribution in this far-from-equilibrium process exhibits dynamic scaling behavior characteristic of the (nearly equilibrium) Ostwald ripening, controlled by the attachment and detachment of the "gas" particles. The scaled size distribution, however, is different from the classical Wagner distribution obtained in the limit of a vanishingly small area fraction of the clusters. A much better agreement is found with the theory of Conti et al. [Phys. Rev. E 65, 046117 (2002)] which accounts for the cluster merger.Comment: 5 pages, to appear in PR

    Towards a continuum theory of clustering in a freely cooling inelastic gas

    Full text link
    We performed molecular dynamics simulations to investigate the clustering instability of a freely cooling dilute gas of inelastically colliding disks in a quasi-one-dimensional setting. We observe that, as the gas cools, the shear stress becomes negligibly small, and the gas flows by inertia only. Finite-time singularities, intrinsic in such a flow, are arrested only when close-packed clusters are formed. We observe that the late-time dynamics of this system are describable by the Burgers equation with vanishing viscosity, and predict the long-time coarsening behavior.Comment: 7 pages, 5 eps figures, to appear in Europhys. Let

    Thermal Instability-Induced Interstellar Turbulence

    Full text link
    We study the dynamics of phase transitions in the interstellar medium by means of three-dimensional hydrodynamic numerical simulations. We use a realistic cooling function and generic nonequilibrium initial conditions to follow the formation history of a multiphase medium in detail in the absence of gravity. We outline a number of qualitatively distinct stages of this process, including a linear isobaric evolution, transition to an isochoric regime, formation of filaments and voids (also known as "thermal" pancakes), the development and decay of supersonic turbulence, an approach to pressure equilibrium, and final relaxation of the multiphase medium. We find that 1%-2% of the initial thermal energy is converted into gas motions in one cooling time. The velocity field then randomizes into turbulence that decays on a dynamical timescale E_k ~ t^-n, 1 < n < 2. While not all initial conditions yield a stable two-phase medium, we examine such a case in detail. We find that the two phases are well mixed with the cold clouds possessing a fine-grained structure near our numerical resolution limit. The amount of gas in the intermediate unstable phase roughly tracks the rms turbulent Mach number, peaking at 25% when M_rms ~ 8, decreasing to 11% when M_rms ~ 0.4.Comment: To appear in the ApJ Letters, April 2002; 5 pages, 3 color figures, mpeg animations available at http://akpc.ucsd.edu/ThermalLetter/thermal.htm

    Formation and evolution of density singularities in hydrodynamics of inelastic gases

    Full text link
    We use ideal hydrodynamics to investigate clustering in a gas of inelastically colliding spheres. The hydrodynamic equations exhibit a new type of finite-time density blowup, where the gas pressure remains finite. The density blowups signal formation of close-packed clusters. The blowup dynamics are universal and describable by exact analytic solutions continuable beyond the blowup time. These solutions show that dilute hydrodynamic equations yield a powerful effective description of a granular gas flow with close-packed clusters, described as finite-mass point-like singularities of the density. This description is similar in spirit to the description of shocks in ordinary ideal gas dynamics.Comment: 4 pages, 3 figures, final versio

    Normal scaling in globally conserved interface-controlled coarsening of fractal clusters

    Full text link
    Globally conserved interface-controlled coarsening of fractal clusters exhibits dynamic scale invariance and normal scaling. This is demonstrated by a numerical solution of the Ginzburg-Landau equation with a global conservation law. The sharp-interface limit of this equation is volume preserving motion by mean curvature. The scaled form of the correlation function has a power-law tail accommodating the fractal initial condition. The coarsening length exhibits normal scaling with time. Finally, shrinking of the fractal clusters with time is observed. The difference between global and local conservation is discussed.Comment: 4 pages, 3 eps figure

    A nonlinear theory of non-stationary low Mach number channel flows of freely cooling nearly elastic granular gases

    Full text link
    We use hydrodynamics to investigate non-stationary channel flows of freely cooling dilute granular gases. We focus on the regime where the sound travel time through the channel is much shorter than the characteristic cooling time of the gas. As a result, the gas pressure rapidly becomes almost homogeneous, while the typical Mach number of the flow drops well below unity. Eliminating the acoustic modes, we reduce the hydrodynamic equations to a single nonlinear and nonlocal equation of a reaction-diffusion type in Lagrangian coordinates. This equation describes a broad class of channel flows and, in particular, can follow the development of the clustering instability from a weakly perturbed homogeneous cooling state to strongly nonlinear states. If the heat diffusion is neglected, the reduced equation is exactly soluble, and the solution develops a finite-time density blowup. The heat diffusion, however, becomes important near the attempted singularity. It arrests the density blowup and brings about novel inhomogeneous cooling states (ICSs) of the gas, where the pressure continues to decay with time, while the density profile becomes time-independent. Both the density profile of an ICS, and the characteristic relaxation time towards it are determined by a single dimensionless parameter that describes the relative role of the inelastic energy loss and heat diffusion. At large values of this parameter, the intermediate cooling dynamics proceeds as a competition between low-density regions of the gas. This competition resembles Ostwald ripening: only one hole survives at the end.Comment: 20 pages, 15 figures, final versio

    Psychological Safety and Communication Difficulties of Teachers and Students During Long-term Online Training

    Get PDF
    Due to the growing concerns related to the psychological well-being of students and teachers during a long and intensive online training, it becomes necessary for teachers, psychologists, practitioners to take measures to prevent threats to online communication and identify personal resources of psychological security in the online environment.The purpose of the study was to identify the communicative difficulties of long-term online learning during the COVID-19 pandemic, and the personal resources of students and teachers that contribute to ensuring their psychological safety.The study was conducted in February-March 2022. The study sample included 132 students and 40 teachers of the Faculty of Psychology of the Russian State Social University (Moscow). The following techniques were used: “The test of hardiness” (S. Muddy, in the Russian-language adaptation of E.N. Osin, E.I. Rasskazova), “The scale of subjective well-being” (A. Perrudet-Badoux, G.A. Mendelssohn, J. Chiche, in the Russian-language adaptation of M.V. Sokolova), “Methodology for assessing the level of sociability” (V.F. Ryakhovsky), questionnaires “Difficulties of online communication” for students and teachers. The empirical data obtained were interpreted and processed using qualitative and quantitative methods of analysis, including: descriptive statistics, frequency analysis, Spearman correlation analysis. The study showed that during the long-term distance learning, students and teachers experienced significant difficulties in online educational communication, had low levels of subjective well-being, resilience and sociability. These personal qualities are systemic in nature, interrelated and can act as resources to ensure the psychological safety of subjects of education, prevention or coping with difficulties of online communication and hybrid forms of learning.The data obtained make it necessary for teachers to create psychodidactic conditions for a safe online educational environment in which students will be involved as subjects of education, will be able to freely share their opinions and not be afraid to make a mistake, will feel belonging to a group and protected from verbal aggression

    Weak selection and stability of localized distributions in Ostwald ripening

    Full text link
    We support and generalize a weak selection rule predicted recently for the self-similar asymptotics of the distribution function (DF) in the zero-volume-fraction limit of Ostwald ripening (OR). An asymptotic perturbation theory is developed that, when combined with an exact invariance property of the system, yields the selection rule, predicts a power-law convergence towards the selected self-similar DF and agrees well with our numerical simulations for the interface- and diffusion-controlled OR.Comment: 4 pages, 2 figures, submitted to PR

    Phase fluctuations in the ABC model

    Full text link
    We analyze the fluctuations of the steady state profiles in the modulated phase of the ABC model. For a system of LL sites, the steady state profiles move on a microscopic time scale of order L3L^3. The variance of their displacement is computed in terms of the macroscopic steady state profiles by using fluctuating hydrodynamics and large deviations. Our analytical prediction for this variance is confirmed by the results of numerical simulations
    • …
    corecore