11 research outputs found

    Interactions between Cells with Distinct Mutations in c-MYC and Pten in Prostate Cancer

    Get PDF
    In human somatic tumorigenesis, mutations are thought to arise sporadically in individual cells surrounded by unaffected cells. This contrasts with most current transgenic models where mutations are induced synchronously in entire cell populations. Here we have modeled sporadic oncogene activation using a transgenic mouse in which c-MYC is focally activated in prostate luminal epithelial cells. Focal c-MYC expression resulted in mild pathology, but prostate-specific deletion of a single allele of the Pten tumor suppressor gene cooperated with c-MYC to induce high grade prostatic intraepithelial neoplasia (HGPIN)/cancer lesions. These lesions were in all cases associated with loss of Pten protein expression from the wild type allele. In the prostates of mice with concurrent homozygous deletion of Pten and focal c-MYC activation, double mutant (i.e. c-MYC+;Pten-null) cells were of higher grade and proliferated faster than single mutant (Pten-null) cells within the same glands. Consequently, double mutant cells outcompeted single mutant cells despite the presence of increased rates of apoptosis in the former. The p53 pathway was activated in Pten-deficient prostate cells and tissues, but c-MYC expression shifted the p53 response from senescence to apoptosis by repressing the p53 target gene p21Cip1. We conclude that c-MYC overexpression and Pten deficiency cooperate to promote prostate tumorigenesis, but a p53-dependent apoptotic response may present a barrier to further progression. Our results highlight the utility of inducing mutations focally to model the competitive interactions between cell populations with distinct genetic alterations during tumorigenesis

    Proteolytic processing of TGFα redirects its mitogenic activity: the membrane-anchored form is autocrine, the secreted form is paracrine

    Get PDF
    AbstractWild-type transforming growth factor α (TGFα) expression in lactotrope cells in the pituitary gland led to lactotrope-specific pituitary hyperplasia and adenomata. To indicate whether the EGF receptor is involved in this TGFα-mediated phenotype, we bred TGFα mice with mice expressing the cytoplasmic truncated-EGF receptor (EGFR-tr), which is dominant-negative in other models. These bitransgenic mice developed pituitary pathology despite expression of the dominant-negative receptor. To further characterize this observation, we generated two lineages of transgenic mice that overexpress mutant forms of TGFα: a processed soluble form (s TGFα) and a cytoplasmic-deleted form (TGFαΔC). While sTGFα expression in lactotrope cells failed to induce autocrine lactotrope hyperplasia, the pituitary became very enlarged due to proliferation of neighboring interstitial cells. In contrast, the TGFαΔC mice did not develop a phenotype, although the mRNA and protein were present in the pituitary and this form of TGFα was confirmed to be biologically active and targeted properly to the plasma membrane of cultured CHO cells. The results suggest that the cytoplasmic domain of TGFα is required for autocrine parenchymal tumor formation in the pituitary gland. This signal cannot be inhibited by the EGFR-tr. Conversely, the released form of TGFα appears to have primarily paracrine activity

    Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The serine/threonine kinase PIM1 has been implicated as an oncogene in various human cancers including lymphomas, gastric, colorectal and prostate carcinomas. In mouse models, Pim1 is known to cooperate with c-Myc to promote tumorigenicity. However, there has been limited analysis of the tumorigenic potential of Pim1 overexpression in benign and malignant human prostate cancer cells <it>in vivo</it>.</p> <p>Methods</p> <p>We overexpressed Pim1 in three human prostate cell lines representing different disease stages including benign (RWPE1), androgen-dependent cancer (LNCaP) and androgen-independent cancer (DU145). We then analyzed <it>in vitro </it>and <it>in vivo </it>tumorigenicity as well as the effect of Pim1 overexpression on c-MYC transcriptional activity by reporter assays and gene expression profiling using an inducible MYC-ER system. To validate that Pim1 induces tumorigenicity and target gene expression by modulating c-MYC transcriptional activity, we inhibited c-MYC using a small molecule inhibitor (10058-F4) or RNA interference.</p> <p>Results</p> <p>Overexpression of Pim1 alone was not sufficient to convert the benign RWPE1 cell to malignancy although it enhanced their proliferation rates when grown as xenografts <it>in vivo</it>. However, Pim1 expression enhanced the <it>in vitro </it>and <it>in vivo </it>tumorigenic potentials of the human prostate cancer cell lines LNCaP and DU145. Reporter assays revealed increased c-MYC transcriptional activity in Pim1-expressing cells and mRNA expression profiling demonstrated that a large fraction of c-MYC target genes were also regulated by Pim1 expression. The c-MYC inhibitor 10058-F4 suppressed the tumorigenicity of Pim1-expressing prostate cancer cells. Interestingly, 10058-F4 treatment also led to a reduction of Pim1 protein but not mRNA. Knocking-down c-MYC using short hairpin RNA reversed the effects of Pim1 on Pim1/MYC target genes.</p> <p>Conclusion</p> <p>Our results suggest an <it>in vivo </it>role of Pim1 in promoting prostate tumorigenesis although it displayed distinct oncogenic activities depending on the disease stage of the cell line. Pim1 promotes tumorigenicity at least in part by enhancing c-MYC transcriptional activity. We also made the novel discovery that treatment of cells with the c-MYC inhibitor 10058-F4 leads to a reduction in Pim1 protein levels.</p

    A Role for Polyploidy in the Tumorigenicity of Pim-1-Expressing Human Prostate and Mammary Epithelial Cells

    Get PDF
    Polyploidy is a prominent feature of many human cancers, and it has long been hypothesized that polyploidy may contribute to tumorigenesis by promoting genomic instability. In this study, we investigated whether polyploidy per se induced by a relevant oncogene can promote genomic instability and tumorigenicity in human epithelial cells.When the oncogenic serine-threonine kinase Pim-1 is overexpressed in immortalized, non-tumorigenic human prostate and mammary epithelial cells, these cells gradually converted to polyploidy and became tumorigenic. To assess the contribution of polyploidy to tumorigenicity, we obtained sorted, matched populations of diploid and polyploid cells expressing equivalent levels of the Pim-1 protein. Spectral karyotyping revealed evidence of emerging numerical and structural chromosomal abnormalities in polyploid cells, supporting the proposition that polyploidy promotes chromosomal instability. Polyploid cells displayed an intact p53/p21 pathway, indicating that the viability of polyploid cells in this system is not dependent on the inactivation of the p53 signaling pathway. Remarkably, only the sorted polyploid cells were tumorigenic in vitro and in vivo.Our results support the notion that polyploidy can promote chromosomal instability and the initiation of tumorigenesis in human epithelial cells

    Nkx3.1 and Myc crossregulate shared target genes in mouse and human prostate tumorigenesis

    No full text
    Cooperativity between oncogenic mutations is recognized as a fundamental feature of malignant transformation, and it may be mediated by synergistic regulation of the expression of pro- and antitumorigenic target genes. However, the mechanisms by which oncogenes and tumor suppressors coregulate downstream targets and pathways remain largely unknown. Here, we used ChIP coupled to massively parallel sequencing (ChIP-seq) and gene expression profiling in mouse prostates to identify direct targets of the tumor suppressor Nkx3.1. Further analysis indicated that a substantial fraction of Nkx3.1 target genes are also direct targets of the oncoprotein Myc. We also showed that Nkx3.1 and Myc bound to and crossregulated shared target genes in mouse and human prostate epithelial cells and that Nkx3.1 could oppose the transcriptional activity of Myc. Furthermore, loss of Nkx3.1 cooperated with concurrent overexpression of Myc to promote prostate cancer in transgenic mice. In human prostate cancer patients, dysregulation of shared NKX3.1/MYC target genes was associated with disease relapse. Our results indicate that NKX3.1 and MYC coregulate prostate tumorigenesis by converging on, and crossregulating, a common set of target genes. We propose that coregulation of target gene expression by oncogenic/tumor suppressor transcription factors may represent a general mechanism underlying the cooperativity of oncogenic mutations during tumorigenesis
    corecore