80 research outputs found

    Targeting the CBM complex causes Treg cells to prime tumours for immune checkpoint therapy.

    Get PDF
    Solid tumours are infiltrated by effector T cells with the potential to control or reject them, as well as by regulatory T (Treg) cells that restrict the function of effector T cells and thereby promote tumour growth1. The anti-tumour activity of effector T cells can be therapeutically unleashed, and is now being exploited for the treatment of some forms of human cancer. However, weak tumour-associated inflammatory responses and the immune-suppressive function of Treg cells remain major hurdles to broader effectiveness of tumour immunotherapy2. Here we show that, after disruption of the CARMA1-BCL10-MALT1 (CBM) signalosome complex, most tumour-infiltrating Treg cells produce IFNγ, resulting in stunted tumour growth. Notably, genetic deletion of both or even just one allele of CARMA1 (also known as Card11) in only a fraction of Treg cells-which avoided systemic autoimmunity-was sufficient to produce this anti-tumour effect, showing that it is not the mere loss of suppressive function but the gain of effector activity by Treg cells that initiates tumour control. The production of IFNγ by Treg cells was accompanied by activation of macrophages and upregulation of class I molecules of the major histocompatibility complex on tumour cells. However, tumour cells also upregulated the expression of PD-L1, which indicates activation of adaptive immune resistance3. Consequently, blockade of PD-1 together with CARMA1 deletion caused rejection of tumours that otherwise do not respond to anti-PD-1 monotherapy. This effect was reproduced by pharmacological inhibition of the CBM protein MALT1. Our results demonstrate that partial disruption of the CBM complex and induction of IFNγ secretion in the preferentially self-reactive Treg cell pool does not cause systemic autoimmunity but is sufficient to prime the tumour environment for successful immune checkpoint therapy

    Automated segmentation and quantification of airway mucus with endobronchial optical coherence tomography

    Get PDF
    We propose a novel suite of algorithms for automatically segmenting the airway lumen and mucus in endobronchial optical coherence tomography (OCT) data sets, as well as a novel approach for quantifying the contents of the mucus. Mucus and lumen were segmented using a robust, multi-stage algorithm that requires only minimal input regarding sheath geometry. The algorithm performance was highly accurate in a wide range of airway and noise conditions. Mucus was classified using mean backscattering intensity and grey level co-occurrence matrix (GLCM) statistics. We evaluated our techniques in vivo in asthmatic and non-asthmatic volunteers

    Adiponectin Decreases Pulmonary Arterial Remodeling in Murine Models of Pulmonary Hypertension

    Get PDF
    Remodeling of the pulmonary arteries is a common feature among the heterogeneous disorders that cause pulmonary hypertension. In these disorders, the remodeled pulmonary arteries often demonstrate inflammation and an accumulation of pulmonary artery smooth muscle cells (PASMCs) within the vessels. Adipose tissue secretes multiple bioactive mediators (adipokines) that can influence both inflammation and remodeling, suggesting that adipokines may contribute to the development of pulmonary hypertension. We recently reported on a model of pulmonary hypertension induced by vascular inflammation, in which a deficiency of the adipokine adiponectin (APN) was associated with the extensive proliferation of PASMCs and increased pulmonary artery pressures. Based on these data, we hypothesize that APN can suppress pulmonary hypertension by directly inhibiting the proliferation of PASMCs. Here, we tested the effects of APN overexpression on pulmonary arterial remodeling by using APN-overexpressing mice in a model of pulmonary hypertension induced by inflammation. Consistent with our hypothesis, mice that overexpressed APN manfiested reduced pulmonary hypertension and remodeling compared with wild-type mice, despite developing similar levels of pulmonary vascular inflammation in the model. The overexpression of APN was also protective in a hypoxic model of pulmonary hypertension. Furthermore, APN suppressed the proliferation of PASMCs, and reduced the activity of the serum response factor–serum response element pathway, which is a critical signaling pathway for smooth muscle cell proliferation. Overall, these data suggest that APN can regulate pulmonary hypertension and pulmonary arterial remodeling through its direct effects on PASMCs. Hence, the activation of APN-like activity in the pulmonary vasculature may be beneficial in pulmonary hypertension

    Allergic asthma is distinguished by sensitivity of allergen-specific CD4+ T cells and airway structural cells to type 2 inflammation

    Get PDF
    Despite systemic sensitization, not all allergic individuals develop asthma symptoms upon airborne allergen exposure. Determination of the factors that lead to the asthma phenotype in allergic individuals could guide treatment and identify novel therapeutic targets. In this study, we utilized segmental allergen challenge (SAC) of allergic asthmatics (AA) and allergic non-asthmatic controls (AC) to determine if there are differences in the airway immune response or airway structural cells that could drive the development of asthma. Both groups developed prominent allergic airway inflammation in response to allergen. However, asthmatic subjects had markedly higher levels of innate type 2 receptors on allergen-specific CD4+ T cells recruited into the airway. There were also increased levels of type 2 cytokines, increased total mucin and increased MUC5AC in response to allergen in the airways of AA subjects. Furthermore, type 2 cytokine levels correlated with the mucin response in AA but not AC subjects, suggesting differences in the airway epithelial response to inflammation. Finally, AA subjects had increased airway smooth muscle mass at baseline measured in vivo using novel orientation-registered optical coherence tomography (OR-OCT). Our data demonstrate that the development of allergic asthma is dependent on the responsiveness of allergen-specific CD4+ T cells to innate type 2 mediators as well as increased sensitivity of airway epithelial cells and smooth muscle to type 2 inflammation

    The Role of CARMA1 in T Cells

    No full text
    • …
    corecore