6 research outputs found

    Exercise training enhanced myocardial endothelial nitric oxide synthase (eNOS) function in diabetic Goto-Kakizaki (GK) rats

    Get PDF
    Abstract Background Different mechanisms of diabetic-induced NO dysfunction have been proposed and central to most of them are significant changes in eNOS function as the rate-limiting step in NO bioavailability. eNOS exists in both monomeric and dimeric conformations, with the dimeric form catalyzing the synthesis of nitric oxide, while the monomeric form catalyzes the synthesis of superoxide (O2-). Diabetic-induced shifts to decrease the dimer:monomer ratio is thought to contribute to the degradation of nitric oxide (NO) bioavailability. Exercise has long been useful in the management of diabetes. Although exercise-induced increases expression of eNOS has been reported, it is unclear if exercise may alter the functional coupling of eNOS. Methods To investigate this question, Goto-Kakizaki rats (a model of type II diabetes) were randomly assigned to a 9-week running program (train) or sedentary (sed) groups. Results Exercise training significantly (p 4), but not in the presence of exogenous BH4. Exercise training also significantly decreased NADPH-dependent O2- activity. Conclusion Exercise-induced increased eNOS dimerization resulted in an increased coupling of the enzyme to facilitate production of NO at the expense of ROS generation. This shift that could serve to decrease diabetic-related oxidative stress, which should serve to lessen diabetic-related complications.</p

    Chronically elevated glucose compromises myocardial mitochondrial DNA integrity by alteration of mitochondrial topoisomerase function

    No full text
    Mitochondrial dysfunction has a significant role in the development and complications of diabetic cardiomyopathy. Mitochondrial dysfunction and mitochondrial DNA (mtDNA) mutations are also associated with different types of cancer and neurodegenerative diseases. The goal of this study was to determine if chronically elevated glucose increase in mtDNA damage contributed to mitochondrial dysfunction and identify the underlying basis for mtDNA damage. H9c2 myotubes (a cardiac-derived cell line) were studied in the presence of 5.5, 16.5, or 33.0 mM glucose for up to 13 days. Tests of mitochondria function (Complex I and IV activity and ATP generation) were all significantly depressed by elevated media glucose. Intramitochondrial superoxide and intracellular superoxide levels were transiently increased during the experimental period. AnnexinV binding (a marker of apoptosis) was significantly increased after 7 and 13 days of high glucose. Thirteen days of elevated glucose significantly increased mtDNA damage globally and across the region encoding for the three subunits of cytochrome oxidase. Using mitochondria isolated from cells chronically exposed to elevated glucose, we observed significant increases in topoisomerase-linked DNA cleavage. Mitochondria-dependent DNA cleavage was significantly exacerbated by H2O2 and that immunoprecipitation of mitochondrial extracts with a mtTOP1 antibody significantly decreased DNA cleavage, indicating that at least part of this activity could be attributed to mtTOP1. We conclude that even mild increases in glucose presentation compromised mitochondrial function as a result of a decline in mtDNA integrity. Separate from a direct impact of oxidative stress on mtDNA, ROS-induced alteration of mitochondrial topoisomerase activity exacerbated and propagated increases in mtDNA damage. These findings are significant in that the activation/inhibition state of the mitochondrial topoisomerases will have important consequences for mitochondrial DNA integrity and the well being of the myocardium
    corecore