37 research outputs found
The Use of Visible Geostationary Operational Meteorological Satellite Imagery in Mapping the Water Balance over Puerto Rico for Water Resource Management
A solar insolation satellite remote sensing product for Puerto Rico, the US Virgin Islands (USVI), Dominican Republic, Haiti, Jamaica, and Cuba became available in 2009 through a collaboration between the University of Puerto Rico-Mayag眉ez Campus and the University of Alabama in Huntsville. Solar insolation data are available at 1聽km resolution for Puerto Rico and the USVI and 2聽km resolution for the other islands, as derived from 500聽m resolution GOES-16 visible imagery. The insolation data demonstrate the powerful utility of satellite-derived fields for water resource applications, specifically the routine production of potential and reference evapotranspiration. This chapter describes the theoretical background and technical approach for estimating components of the daily water and energy balance in Puerto Rico. Useful information can be obtained from the model, which benefits disaster and emergency management, agriculture, human health, ecology, coastal water management, and renewable energy development at the island scale
Assimilation of Dual-Polarimetric Radar Data and GPM GMI Rainrate with WRF GSI
No abstract availabl
Assimilation of GPM GMI Rainfall Product with WRF GSI
The Global Precipitation Measurement (GPM) is an international mission to provide next-generation observations of rain and snow worldwide. The GPM built on Tropical Rainfall Measuring Mission (TRMM) legacy, while the core observatory will extend the observations to higher latitudes. The GPM observations can help advance our understanding of precipitation microphysics and storm structures. Launched on February 27th, 2014, the GPM core observatory is carrying advanced instruments that can be used to quantify when, where, and how much it rains or snows around the world. Therefore, the use of GPM data in numerical modeling work is a new area and will have a broad impact in both research and operational communities. The goal of this research is to examine the methodology of assimilation of the GPM retrieved products. The data assimilation system used in this study is the community Gridpoint Statistical Interpolation (GSI) system for the Weather Research and Forecasting (WRF) model developed by the Development Testbed Center (DTC). The community GSI system runs in independently environment, yet works functionally equivalent to operational centers. With collaboration with the NASA Short-term Prediction Research and Transition (SPoRT) Center, this research explores regional assimilation of the GPM products with case studies. Our presentation will highlight our recent effort on the assimilation of the GPM product 2AGPROFGMI, the retrieved Microwave Imager (GMI) rainfall rate data for initializing a real convective storm. WRF model simulations and storm scale data assimilation experiments will be examined, emphasizing both model initialization and short-term forecast of precipitation fields and processes. In addition, discussion will be provided on the development of enhanced assimilation procedures in the GSI system with respect to other GPM products. Further details of the methodology of data assimilation, preliminary result and test on the impact of GPM data and the influence on precipitation forecast will be presented at the conference
Assimilation of GPM GMI Rainrate Data with GSI and WRF Model
No abstract availabl
Assimilation of CYGNSS v2 Beta Data for Hurricane Harvey (2017)
No abstract availabl
Analysis and Assimilation of CYGNSS Wind Data for Improved Tropical Convection Forecasts
No abstract availabl
Assimilating SWOT Water Surface Elevations into the WRF-Hydro Modeling System in Alaska Using HydroDART
No abstract availabl
Analysis and Modeling of Tropical Convection Observed by CYGNSS
No abstract availabl
An Integrated 0-1 Hour First-Flash Lightning Nowcasting, Lightning Amount and Lightning Jump Warning Capability
Lightning one of the most dangerous weather-related phenomena, especially as many jobs and activities occur outdoors, presenting risk from a lightning strike. Cloud-to-ground (CG) lightning represents a considerable safety threat to people at airfields, marinas, and outdoor facilities-from airfield personnel, to people attending outdoor stadium events, on beaches and golf courses, to mariners, as well as emergency personnel. Holle et al. (2005) show that 90% of lightning deaths occurred outdoors, while 10% occurred indoors despite the perception of safety when inside buildings. Curran et al. (2000) found that nearly half of fatalities due to weather were related to convective weather in the 1992-1994 timeframe, with lightning causing a large component of the fatalities, in addition to tornadoes and flash flooding. Related to the aviation industry, CG lightning represents a considerable hazard to baggage-handlers, aircraft refuelers, food caterers, and emergency personnel, who all become exposed to the risk of being struck within short time periods while convective storm clouds develop. Airport safety protocols require that ramp operations be modified or discontinued when lightning is in the vicinity (typically 16 km), which becomes very costly and disruptive to flight operations. Therefore, much focus has been paid to nowcasting the first-time initiation and extent of lightning, both of CG and of any lightning (e.g, in-cloud, cloud-to-cloud). For this project three lightning nowcasting methodologies will be combined: (1) a GOESbased 0-1 hour lightning initiation (LI) product (Harris et al. 2010; Iskenderian et al. 2012), (2) a High Resolution Rapid Refresh (HRRR) lightning probability and forecasted lightning flash density product, such that a quantitative amount of lightning (QL) can be assigned to a location of expected LI, and (3) an algorithm that relates Pseudo-GLM data (Stano et al. 2012, 2014) to the so-called "lightning jump" (LJ) methodology (Shultz et al. 2011) to monitor lightning trends and to anticipate/forecast severe weather (hail > or =2.5 cm, winds > or =25 m/s, tornadoes). The result will be a time-continuous algorithm that uses GOES satellite, radar fields, and HRRR model fields to nowcast first-flash LI and QL, and subsequently monitors lightning trends on a perstorm basis within the LJ algorithm for possible severe weather occurrence out to > or =3 hours. The LI-QL-LJ product will also help prepare the operational forecast community for Geostationary Lightning Mapper (GLM) data expected in late 2015, as these data are monitored for ongoing convective storms. The LI-QL-LJ product will first predict where new lightning is highly probable using GOES imagery of developing cumulus clouds, followed by n analysis of NWS (dual-polarization) radar indicators (reflectivity at the -10 C altitude) of lightning occurrence, to increase confidence that LI is immanent. Once lightning is observed, time-continuous lightning mapping array and Pseudo-GLM observations will be analyzed to assess trends and the severe weather threat as identified by trends in lightning (i.e. LJs). Additionally, 5- and 15-min GOES imagery will then be evaluated on a per-storm basis for overshooting and other cloud-top features known to be associated with severe storms. For the processing framework, the GOES-R 0-1 hour convective initiation algorithm's output will be developed within the Warning Decision Support System - Integrated Information (WDSS-II) tracking tool, and merged with radar and lightning (LMA/Psuedo-GLM) datasets for active storms. The initial focus of system development will be over North Alabama for select lightning-active days in summer 2014, yet will be formed in an expandable manner. The lightning alert tool will also be developed in concert with National Weather Service (NWS) forecasters to meet their needs for real-time, accurate first-flash LI and timing, as well as anticipated lightning trends, amounts, continuation and cessation, so to provide key situational awareness and decision support information. The NASA Short-term Prediction Research and Transition (SPoRT) Center will provide important logistical and collaborative support and training, involving interactions with the NWS and broader user community