294 research outputs found

    Pilot dynamics for instrument approach tasks: Full panel multiloop and flight director operations

    Get PDF
    Measurements and interpretations of single and mutiloop pilot response properties during simulated instrument approach are presented. Pilot subjects flew Category 2-like ILS approaches in a fixed base DC-8 simulaton. A conventional instrument panel and controls were used, with simulated vertical gust and glide slope beam bend forcing functions. Reduced and interpreted pilot describing functions and remmant are given for pitch attitude, flight director, and multiloop (longitudinal) control tasks. The response data are correlated with simultaneously recorded eye scanning statistics, previously reported in NASA CR-1535. The resulting combined response and scanning data and their interpretations provide a basis for validating and extending the theory of manual control displays

    Flight control systems properties and problems, volume 1

    Get PDF
    This volume contains a delineation of fundamental and mechanization-specific flight control characteristics and problems gleaned from many sources and spanning a period of over two decades. It is organized to present and discuss first some fundamental, generic problems of closed-loop flight control systems involving numerator characteristics (quadratic dipoles, non-minimum phase roots, and intentionally introduced zeros). Next the principal elements of the largely mechanical primary flight control system are reviewed with particular emphasis on the influence of nonlinearities. The characteristics and problems of augmentation (damping, stability, and feel) system mechanizations are then dealt with. The particular idiosyncracies of automatic control actuation and command augmentation schemes are stressed, because they constitute the major interfaces with the primary flight control system and an often highly variable vehicle response

    Investigation of interactions between limb-manipulator dynamics and effective vehicle roll control characteristics

    Get PDF
    A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective role time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control)

    Space Shuttle flying qualities criteria assessment. Phase 5: Data acquistion and analysis

    Get PDF
    The development of flying qualities experiments (OFQ) as a part of the Orbiter Experiments Program (OEX) was continued. The data base was extended to use the ground based cinetheodolite measurements of orbiter approach and landing. Onboard the cinetheodolite data were analyzed from flights STS 2 through 7 to identify the effective augmented vehicle dynamics, the control strategy employed by the pilot during preflare, shallow glide, and final flare segments of the landing, and the key approach and touchdown performance measures. A plan for an OFQ flying qualities data archive and processing is presented

    Space Shuttle flying qualities and flight control system assessment study, phase 2

    Get PDF
    A program of flying qualities experiments as part of the Orbiter Experiments Program (OEX) is defined. Phase 1, published as CR-170391, reviewed flying qualities criteria and shuttle data. The review of applicable experimental and shuttle data to further define the OEX plan is continued. An unconventional feature of this approach is the use of pilot strategy model identification to relate flight and simulator results. Instrumentation, software, and data analysis techniques for pilot model measurements are examined. The relationship between shuttle characteristics and superaugmented aircraft is established. STS flights 1 through 4 are reviewed from the point of view of flying qualities. A preliminary plan for a coordinated program of inflight and simulator research is presented

    Space Shuttle flying qualities and flight control system assessment study

    Get PDF
    The suitability of existing and proposed flying quality and flight control system criteria for application to the space shuttle orbiter during atmospheric flight phases was assessed. An orbiter experiment for flying qualities and flight control system design criteria is discussed. Orbiter longitudinal and lateral-directional flying characteristics, flight control system lag and time delay considerations, and flight control manipulator characteristics are included. Data obtained from conventional aircraft may be inappropriate for application to the shuttle orbiter

    Driver steering dynamics measured in car simulator under a range of visibility and roadmaking conditions

    Get PDF
    A simulation experiment was conducted to determine the effect of reduced visibility on driver lateral (steering) control. The simulator included a real car cab and a single lane road image projected on a screen six feet in front of the driver. Simulated equations of motion controlled apparent car lane position in response to driver steering actions, wind gusts, and road curvature. Six drivers experienced a range of visibility conditions at various speeds with assorted roadmaking configurations (mark and gap lengths). Driver describing functions were measured and detailed parametric model fits were determined. A pursuit model employing a road curvature feedforward was very effective in explaining driver behavior in following randomly curving roads. Sampled-data concepts were also effective in explaining the combined effects of reduced visibility and intermittent road markings on the driver's dynamic time delay. The results indicate the relative importance of various perceptual variables as the visual input to the driver's steering control process is changed

    Development of approach control system requirements with applications to a jet transport

    Get PDF
    The development of requirements for an approach control system and example applications to a jet transport aircraft are presented. The material is divided into a general discussion of approach control requirements, and a specific application resulting in the design of three alternative longitudinal controllers. The point of view taken is that the essential features of the system structure are the feedbacks themselves, their equalization, and their combinations to create control commands. Use is made of the fact that for sucessful systems the possible feedback structures are very limited. They derive primarily from guidance, control, and regulation demands; and secondarily from dynamic response characteristics desired by the pilot. From the systems view it is the satisfaction of these requirements that is important rather than the means automatic, manual, or hygrid manual/automatic approach systems

    Space shuttle flying qualities and criteria assessment

    Get PDF
    Work accomplished under a series of study tasks for the Flying Qualities and Flight Control Systems Design Criteria Experiment (OFQ) of the Shuttle Orbiter Experiments Program (OEX) is summarized. The tasks involved review of applicability of existing flying quality and flight control system specification and criteria for the Shuttle; identification of potentially crucial flying quality deficiencies; dynamic modeling of the Shuttle Orbiter pilot/vehicle system in the terminal flight phases; devising a nonintrusive experimental program for extraction and identification of vehicle dynamics, pilot control strategy, and approach and landing performance metrics, and preparation of an OEX approach to produce a data archive and optimize use of the data to develop flying qualities for future space shuttle craft in general. Analytic modeling of the Orbiter's unconventional closed-loop dynamics in landing, modeling pilot control strategies, verification of vehicle dynamics and pilot control strategy from flight data, review of various existent or proposed aircraft flying quality parameters and criteria in comparison with the unique dynamic characteristics and control aspects of the Shuttle in landing; and finally a summary of conclusions and recommendations for developing flying quality criteria and design guides for future Shuttle craft

    Flexible aircraft flying and ride qualities

    Get PDF
    A brief analytic exposition is presented to illustrate a central principle in flexible mode control, some of the pertinent pilot centered requirements are listed and discussed. The desired features of the control methodology are exposed and the methodology to be used is selected. The example Boeing supplied characteristics are discussed and approximated with a reduced order model and a simplified treatment of unsteady aerodynamics. The closed loop flight control system design follows, along with first level assessments of resulting handling and ride quality characteristics. Some of these do not meet the postulated requirements and remain problems to be solved possibly by further analysis or future simulation
    corecore