181 research outputs found

    Beam-Ion Acceleration during Edge Localized Modes in the ASDEX Upgrade Tokamak

    Get PDF
    The acceleration of beam ions during edge localized modes (ELMs) in a tokamak is observed for the first time through direct measurements of fast-ion losses in low collisionality plasmas. The accelerated beamion population exhibits well-localized velocity-space structures which are revealed by means of tomographic inversion of the measurement, showing energy gains of the order of tens of keV. This suggests that the ion acceleration results from a resonant interaction between the beam ions and parallel electric fields arising during the ELM. Orbit simulations are carried out to identify the mode-particle resonances responsible for the energy gain in the particle phase space. The observation motivates the incorporation of a kinetic description of fast particles in ELM models and may contribute to a better understanding of the mechanisms responsible for particle acceleration, ubiquitous in astrophysical and space plasmas.H2020 Marie- Sklodowska Curie programme (Grant No. 708257)Ministerio de EconomĂ­a y Competitividad. FIS2015-69362-

    CENTORI: a global toroidal electromagnetic two-fluid plasma turbulence code

    Full text link
    A new global two-fluid electromagnetic turbulence code, CENTORI, has been developed for the purpose of studying magnetically-confined fusion plasmas on energy confinement timescales. This code is used to evolve the combined system of electron and ion fluid equations and Maxwell equations in toroidal configurations with axisymmetric equilibria. Uniquely, the equilibrium is co-evolved with the turbulence, and is thus modified by it. CENTORI is applicable to tokamaks of arbitrary aspect ratio and high plasma beta. A predictor-corrector, semi-implicit finite difference scheme is used to compute the time evolution of fluid quantities and fields. Vector operations and the evaluation of flux surface averages are speeded up by choosing the Jacobian of the transformation from laboratory to plasma coordinates to be a function of the equilibrium poloidal magnetic flux. A subroutine, GRASS, is used to co-evolve the plasma equilibrium by computing the steady-state solutions of a diffusion equation with a pseudo-time derivative. The code is written in Fortran 95 and is efficiently parallelized using Message Passing Interface (MPI). Illustrative examples of output from simulations of a tearing mode in a large aspect ratio tokamak plasma and of turbulence in an elongated conventional aspect ratio tokamak plasma are provided.Comment: 9 figure

    Observation of accelerated beam ion population during edge localized modes in the ASDEX Upgrade tokamak

    Get PDF
    The interaction between fast-ions and edge localized modes (ELMs) is investigated by means of fast-ion loss detector measurements. Fast-ion losses are increased during ELMs exhibiting a 3D filamentary-like behaviour. An accelerated beam ion population has been observed during ELMs in a tokamak for the first time. Tomographic inversion of the measured fast-ion losses reveal multiple velocity-space structures. Attending to the experimental observations, an acceleration mechanism is proposed based on a resonant interaction between the beam ions and parallel electric fields emerging during the ELM crash. The key experimental observations can be qualitatively reproduced by full-orbit following simulations of fast-ions in the presence of the ELM magnetic and electric perturbation fields. Our findings may shed light on the possible contribution of fast-ions to the ELM stability and the transient heat loads on plasma facing components.EUROfusion Consortium 633053Spanish Ministry of Economy and Competitiveness (Grant No. FIS2015-69362-P)H2020 Marie Sklodowska Curie programme (Grant No. 708257

    Multicomponent theory of buoyancy instabilities in magnetized plasmas: The case of magnetic field parallel to gravity

    Full text link
    We investigate electromagnetic buoyancy instabilities of the electron-ion plasma with the heat flux based on not the magnetohydrodynamic (MHD) equations, but using the multicomponent plasma approach when the momentum equations are solved for each species. We consider a geometry in which the background magnetic field, gravity, and stratification are directed along one axis. The nonzero background electron thermal flux is taken into account. Collisions between electrons and ions are included in the momentum equations. No simplifications usual for the one-fluid MHD-approach in studying these instabilities are used. We derive a simple dispersion relation, which shows that the thermal flux perturbation generally stabilizes an instability for the geometry under consideration. This result contradicts to conclusion obtained in the MHD-approach. We show that the reason of this contradiction is the simplified assumptions used in the MHD analysis of buoyancy instabilities and the role of the longitudinal electric field perturbation which is not captured by the ideal MHD equations. Our dispersion relation also shows that the medium with the electron thermal flux can be unstable, if the temperature gradients of ions and electrons have the opposite signs. The results obtained can be applied to the weakly collisional magnetized plasma objects in laboratory and astrophysics.Comment: Accepted for publication in Astrophysics & Space Scienc

    Fusion product losses due to fishbone instabilities in deuterium JET plasmas

    Get PDF
    During development of a high-performance hybrid scenario for future deuterium–tritium experiments on the Joint European Torus, an increased level of fast ion losses in the MeV energy range was observed during the instability of high-frequency n  =  1 fishbones. The fishbones are excited during deuterium neutral beam injection combined with ion cyclotron heating. The frequency range of the fishbones, 10–25 kHz, indicates that they are driven by a resonant interaction with the NBI-produced deuterium beam ions in the energy range  ≤120 keV. The fast particle losses in a much higher energy range are measured with a fast ion loss detector, and the data show an expulsion of deuterium plasma fusion products, 1 MeV tritons and 3 MeV protons, during the fishbone bursts. An MHD mode analysis with the MISHKA code combined with the nonlinear wave-particle interaction code HAGIS shows that the loss of toroidal symmetry caused by the n  =  1 fishbones affects strongly the confinement of non-resonant high energy fusion-born tritons and protons by perturbing their orbits and expelling them. This modelling is in a good agreement with the experimental data.This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053 and from the RCUK Energy Programme [grant No EP/P012450/1]. To obtain further information on the data and models underlying this paper please contact [email protected] . The views and opinions expressed herein do not necessarily reflect those of the European CommissionPeer ReviewedPostprint (author's final draft

    Review article: MHD wave propagation near coronal null points of magnetic fields

    Full text link
    We present a comprehensive review of MHD wave behaviour in the neighbourhood of coronal null points: locations where the magnetic field, and hence the local Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the Alfven wave and the fast and slow magnetoacoustic waves, has been investigated in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null points, for a variety of assumptions, configurations and geometries. In general, it is found that the fast magnetoacoustic wave behaviour is dictated by the Alfven-speed profile. In a β=0\beta=0 plasma, the fast wave is focused towards the null point by a refraction effect and all the wave energy, and thus current density, accumulates close to the null point. Thus, null points will be locations for preferential heating by fast waves. Independently, the Alfven wave is found to propagate along magnetic fieldlines and is confined to the fieldlines it is generated on. As the wave approaches the null point, it spreads out due to the diverging fieldlines. Eventually, the Alfven wave accumulates along the separatrices (in 2D) or along the spine or fan-plane (in 3D). Hence, Alfven wave energy will be preferentially dissipated at these locations. It is clear that the magnetic field plays a fundamental role in the propagation and properties of MHD waves in the neighbourhood of coronal null points. This topic is a fundamental plasma process and results so far have also lead to critical insights into reconnection, mode-coupling, quasi-periodic pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note this is a 2011 paper, not a 2010 pape

    Recent Advances in Understanding Particle Acceleration Processes in Solar Flares

    Full text link
    We review basic theoretical concepts in particle acceleration, with particular emphasis on processes likely to occur in regions of magnetic reconnection. Several new developments are discussed, including detailed studies of reconnection in three-dimensional magnetic field configurations (e.g., current sheets, collapsing traps, separatrix regions) and stochastic acceleration in a turbulent environment. Fluid, test-particle, and particle-in-cell approaches are used and results compared. While these studies show considerable promise in accounting for the various observational manifestations of solar flares, they are limited by a number of factors, mostly relating to available computational power. Not the least of these issues is the need to explicitly incorporate the electrodynamic feedback of the accelerated particles themselves on the environment in which they are accelerated. A brief prognosis for future advancement is offered.Comment: This is a chapter in a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Fermi acceleration in astrophysical jets

    Get PDF
    We consider the acceleration of energetic particles by Fermi processes (i.e., diffusive shock acceleration, second order Fermi acceleration, and gradual shear acceleration) in relativistic astrophysical jets, with particular attention given to recent progress in the field of viscous shear acceleration. We analyze the associated acceleration timescales and the resulting particle distributions, and discuss the relevance of these processes for the acceleration of charged particles in the jets of AGNs, GRBs and microquasars, showing that multi-component powerlaw-type particle distributions are likely to occur.Comment: 6 pages, one figure; based on talk at "The multimessenger approach to unidentified gamma-ray sources", Barcelona/Spain, July 2006; accepted for publication in Astrophysics and Space Scienc
    • …
    corecore