4,240 research outputs found
GaAs (AlGaAs)/CuInSe2 tandem solar cells. Technology status and future directions
Mechanically stacked, high efficiency, lightweight, and radiation resistant photovoltaic cells based on a GaAs thin film top and CuInSe2 thin film bottom cells were developed, and are considered one of the most promising devices for planar solar array applications. The highest efficiency demonstrated so far using the 4 sq cm design is 23.1 pct. AM0, one sun efficiency when measured in four-terminal configuration. The current status of the GaAs(AlGaAs)/CuInSe2 tandem cell program is presented and future directions that will lead to cell efficiencies higher than 26 pct. Air Mass Zero (AM0). A new 8 sq cm cell design developed for a two terminal and voltage matched configuration to minimize wiring complexity is discussed. Optimization of the GaAs structure for a higher end-of-life performance and further improvement of tandem cells by utilizing AlGaAs as an top absorber are described. Results of environmental tests conducted with these thin film GaAs/CuInSe2 tandem cells are also summarized
GaAs monolithic frequency doublers with series connected varactor diodes
GaAs monolithic frequency doublers using series connected varactor diodes have been fabricated for the first time. Output powers of 150 mW at 36.9 GHz with 24% efficiency and 300 mW at 24.8 GHz with 18% efficiency have been obtained. Peak efficiencies of 35% at output power levels near 100 mW have been achieved at both frequencies. Both K-band and Ka-band frequency doublers are derived from a lower power, single-diode design by series connection of two diodes and scaling to achieve different power and frequency specifications. Their fabrication was accomplished using the same process sequence
- …