31 research outputs found

    Eroding Potentiometers

    Get PDF
    Eroding potentiometers have been devised for measuring the time-dependent positions of char fronts advancing through layers of insulating material subject to intense heating from one side. In the original application, the material layers of interest are thermal insulators in rocket motors and the heat comes from firing of the motors, but the principle of operation is equally applicable to other insulating materials subject to intense heating (e.g., ablative fire-retardant materials). Measuring the thickness decrement of propellant (in hybrid motors in particular) is another possible application of this transducer. Telemetry informs mission control of the propellant left after each burn. An eroding potentiometer could be characterized, more precisely, as an eroding two-wire resistor. It includes a twisted pair of thin, insulated wires oriented along the thickness of, and embedded in, the layer of thermal-insulation material to be tested (see figure). The electrical insulation material on the wires should be one for which the charring temperature is about the same as (or perhaps slightly less than) that of the thermal- insulation material to be tested. In the original rocket-motor application, the wires have a diameter of 0.003 in. (.0.08 mm), are made of manganin, and are coated with polyimide for electrical insulation. Outside the thermal insulation on the cold side, the wire leads are connected to a Wheatstone bridge circuit for measurement of electrical resistance change

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    Transient temperature distributions in short-circuited electrical conductors

    No full text
    M.S.William Z. Blac

    Real-Time Inhibitor Recession Measurements in the Space Shuttle Reusable Solid Rocket Motors

    No full text
    Real-time char line recession measurements were made on propellant inhibitors of the Space Shuttle Reusable Solid Rocket Motor (RSRM). The RSRM FSM-8 static test motor propellant inhibitors (composed of a rubber insulation material) were successfully instrumented with eroding potentiometers and thermocouples. The data was used to establish inhibitor recession versus time relationships. Normally, pre-fire and post-fire insulation thickness measurements establish the thermal performance of an ablating insulation material. However, post-fire inhibitor decomposition and recession measurements are complicated by the fact that most of the inhibitor is back during motor operation. It is therefore a difficult task to evaluate the thermal protection offered by the inhibitor material. Real-time measurements would help this task. The instrumentation program for this static test motor marks the first time that real-time inhibitors. This report presents that data for the center and aft field joint forward facing inhibitors. The data was primarily used to measure char line recession of the forward face of the inhibitors which provides inhibitor thickness reduction versus time data. The data was also used to estimate the inhibitor height versus time relationship during motor operation

    Investigation Leads to Improved Understanding of Space Shuttle RSRM Internal Insulation Joints

    No full text
    The Space Shuttle Reusable Solid Rocket Motor (RSRM) uses an internal insulation J-joint design for the mated insulation interface between two assembled RSRM segments. In this assembled (mated) segment configuration, this J-joint design serves as a thermal barrier to prevent hot gases from affecting the case field joint metal surfaces and O-rings. A pressure sensitive adhesive (PSA) provides some adhesion between the two mated insulation surfaces. In 1995, after extensive testing, a new ODC-free PSA (free of ozone depleting chemicals) was selected for flight on RSRM-55 (STS-78). Post-flight inspection revealed that the J-joint, equipped with the new ODC-free PSA, did not perform well. Hot gas seeped inside the J-joint interface. Although not a flight safety threat, the J-joint hot gas intrusion on RSRM-55 was a mystery to the investigators since the PSA had previously worked well on a full-scale static test. A team was assembled to study the J-joint and PSA further. All J-joint design parameters, measured data, and historical performance data were re-reviewed and evaluated by subscale testing and analysis. Although both the ODC-free and old PSA were weakened by humidity, the ODC-free PSA strength was lower to start with. Another RSRM full-scale static test was conducted in 1998 and intentionally duplicated the gas intrusion. This test, along with many concurring tests, showed that if a J-joint was 1) mated with the new ODC-free PSA, 2) exposed to a history of high humidity (Kennedy Space Center levels), and 3) also a joint which experienced significant but normal joint motion (J-joint deformation resulting from motor pressurization dynamics) then that J-joint would open (allow gas intrusion) during motor operation. When all of the data from the analyses, subscale tests, and full-scale tests were considered together, a theory emerged. Most of the joint motion on the RSRM occurs early in motor operation at which point the J-joints are pulled into tension. If the new PSA has been weakened due to humidity, then the J-joint will partially pull apart (inboard side), and the J-joint surfaces will be charred by exposure to hot gases. After early operation, a J-joint that has been pulled apart will come back together as the J-joint deformation decreases. This J-joint heating event is relatively short and occurs only during the first part of motor operation. Internal instrumentation was developed for another full-scale static test in February 2000. The static test instrumentation did indeed prove this theory to be correct. Post-test inspection revealed very similar charring characteristics as observed on RSRM-55. This experience of the development of a new PSA, its testing, the RSRM-55 flight, followed by the J-joint investigation led to good 'lessons learned' and to an additional fundamental understanding of the RSRM J-joint function

    Patient needs and preferences for herb-drug-disease interaction alerts: a structured interview study

    No full text
    Abstract Background While complementary and alternative medicine (CAM) is commonly used in the United States and elsewhere, and hazardous interactions with prescription drugs can occur, patients do not regularly communicate with physicians about their CAM use. The objective of this study was to discover patient information needs and preferences for herb-drug-disease interaction alerts. Methods We recruited 50 people from several locations within the University of Utah Hospital to participate in this structured interview study. They were asked to provide their preferences for the herb-drug-disease interaction alerts. Qualitative methods were used to reveal the themes that emerged from the interviews. Results Most participants reported they had previously used, or they were currently using, CAM therapies. The majority had made the effort to inform their healthcare provider(s) about their CAM usage, although some had not. We found that most respondents were interested in receiving alerts and information about potential interactions. Many preferred to receive the alerts in a variety of ways, both in person and electronically. Conclusions In addition to conventional medicine, many patients regularly use complementary and alternative therapies. And yet, communication between patients and providers about CAM use is not consistent. There is a demand for interventions in health care that provide timely, integrative communication support. Delivering the herb-drug-disease alerts through multiple channels could help meet critical patient information needs
    corecore