45 research outputs found

    H-Aquil: a chemically defined cell culture medium for trace metal studies in Vibrios and other marine heterotrophic bacteria

    Get PDF
    A variety of trace metals, including prominently iron (Fe) are necessary for marine microorganisms. Chemically defined medium recipes have been used for several decades to study phytoplankton, but similar methods have not been adopted as widely in studies of marine heterotrophic bacteria. Medium recipes for these organisms frequently include tryptone, casamino acids, as well as yeast and animal extracts. These components introduce unknown concentrations of trace elements and organic compounds, complicating metal speciation. Minimal medium recipes utilizing known carbon and nitrogen sources do exist but often have high background trace metal concentrations. Here we present H-Aquil, a version of the phytoplankton medium Aquil adapted for marine heterotrophic bacteria. This medium consists of artificial seawater supplemented with a carbon source, phosphate, amino acids, and vitamins. As in Aquil, trace metals are controlled using the synthetic chelator EDTA. We also address concerns of EDTA toxicity, showing that concentrations up to 100 µM EDTA do not lead to growth defects in the copiotrophic bacterium Vibrio harveyi or the oligotrophic bacterium Candidatus Pelagibacter ubique HTCC1062, a member of the SAR11 clade. H-Aquil is used successfully to culture species of Vibrio, Phaeobacter, and Silicibacter, as well as several environmental isolates. We report a substantial decrease in growth rate between cultures grown with or without added Fe, making the medium suitable for conducting Fe-limitation studies in a variety of marine heterotrophic bacteria

    H-Aquil: a chemically defined cell culture medium for trace metal studies in Vibrios and other marine heterotrophic bacteria

    Get PDF
    A variety of trace metals, including prominently iron (Fe) are necessary for marine microorganisms. Chemically defined medium recipes have been used for several decades to study phytoplankton, but similar methods have not been adopted as widely in studies of marine heterotrophic bacteria. Medium recipes for these organisms frequently include tryptone, casamino acids, as well as yeast and animal extracts. These components introduce unknown concentrations of trace elements and organic compounds, complicating metal speciation. Minimal medium recipes utilizing known carbon and nitrogen sources do exist but often have high background trace metal concentrations. Here we present H-Aquil, a version of the phytoplankton medium Aquil adapted for marine heterotrophic bacteria. This medium consists of artificial seawater supplemented with a carbon source, phosphate, amino acids, and vitamins. As in Aquil, trace metals are controlled using the synthetic chelator EDTA. We also address concerns of EDTA toxicity, showing that concentrations up to 100 µM EDTA do not lead to growth defects in the copiotrophic bacterium Vibrio harveyi or the oligotrophic bacterium Candidatus Pelagibacter ubique HTCC1062, a member of the SAR11 clade. H-Aquil is used successfully to culture species of Vibrio, Phaeobacter, and Silicibacter, as well as several environmental isolates. We report a substantial decrease in growth rate between cultures grown with or without added Fe, making the medium suitable for conducting Fe-limitation studies in a variety of marine heterotrophic bacteria

    Global distribution of a wild alga revealed by targeted metagenomics

    Get PDF
    Eukaryotic phytoplankton play key roles in atmospheric CO2 uptake and sequestration in marine environments 1, 2. Community shifts attributed to climate change have already been reported in the Arctic ocean, where tiny, photosynthetic picoeukaryotes (≤3 μm diameter) have increased, while larger taxa have decreased [3]. Unfortunately, for vast regions of the world's oceans, little is known about distributions of different genera and levels of genetic variation between ocean basins. This lack of baseline information makes it impossible to assess the impacts of environmental change on phytoplankton diversity, and global carbon cycling. A major knowledge impediment is that these organisms are highly diverse, and most remain uncultured [2]. Metagenomics avoids the culturing step and provides insights into genes present in the environment without some of the biases associated with conventional molecular survey methods. However, connecting metagenomic sequences to the organisms containing them is challenging. For many unicellular eukaryotes the reference genomes needed to make this connection are not available. We circumvented this problem using at-sea fluorescence activated cell sorting (FACS) to separate abundant natural populations of photosynthetic eukaryotes and sequence their DNA, generating reference genome information while eliminating the need for culturing [2]. Here, we present the complete chloroplast genome from an Atlantic picoeukaryote population and discoveries it enabled on the evolution, distribution, and potential carbon sequestration role of a tiny, wild alg

    Effect of iron limitation on the isotopic composition of cellular and released fixed nitrogen in Azotobacter vinelandii

    Get PDF
    Most biological nitrogen transformations have characteristic kinetic isotope effects used to track these processes in modern and past environments. The isotopic fractionation associated with nitrogen fixation, the only biological source of fixed nitrogen (N), provides a particularly important constraint for studies of nitrogen cycling. Nitrogen fixation using the ‘canonical’ Mo-nitrogenase produces biomass with a δ^(15)N value of ca. −1‰ (vs. atmospheric N_2). If the ‘alternative’ V- and Fe-only nitrogenases are used, biomass δ^(15)N can be between −6‰ and −7‰. These biomass values are assumed to be relatively invariant and to reflect the cellular level expressed isotope effect of nitrogen fixation. However, field and laboratory studies report wide ranges of diazotrophic biomass δ^(15)N (from −3.6‰ to +0.5‰ for Mo-based nitrogen fixation). This variation could be partly explained by the release of dissolved organic N (DON) that is isotopically distinct from biomass. The model nitrogen fixer Azotobacter vinelandii secretes siderophores, small molecules that aid in Fe uptake and can comprise >30% of fixed nitrogen. To test whether siderophores (and other released N) can decouple biomass δ^(15)N from the isotope effect of nitrogen fixation we measured the isotopic composition of biomass and released N in Fe-limited A. vinelandii cultures fixing nitrogen with Mo- and V-nitrogenases. We report that biomass δ^(15)N was elevated under Fe limitation with a maximum value of +1.2‰ for Mo-based nitrogen fixation. Regardless of the nitrogenase isozyme used, released nitrogen δ^(15)N was also 2–3‰ lower than biomass δ^(15)N. Siderophore nitrogen was found to have a slightly higher δ^(15)N than the rest of the DON pool but was still produced in large enough concentrations to account for increases in biomass δ15N. The low δ^(15)N of siderophores (relative to biomass) is consistent with what is known from compound specific isotope studies of the amino acids used in siderophore biosynthesis, and indicates that other amino-acid derived siderophores should also have a low δ^(15)N. The implications for studies of nitrogen fixation are discussed

    Effect of iron limitation on the isotopic composition of cellular and released fixed nitrogen in Azotobacter vinelandii

    Get PDF
    Most biological nitrogen transformations have characteristic kinetic isotope effects used to track these processes in modern and past environments. The isotopic fractionation associated with nitrogen fixation, the only biological source of fixed nitrogen (N), provides a particularly important constraint for studies of nitrogen cycling. Nitrogen fixation using the ‘canonical’ Mo-nitrogenase produces biomass with a δ^(15)N value of ca. −1‰ (vs. atmospheric N_2). If the ‘alternative’ V- and Fe-only nitrogenases are used, biomass δ^(15)N can be between −6‰ and −7‰. These biomass values are assumed to be relatively invariant and to reflect the cellular level expressed isotope effect of nitrogen fixation. However, field and laboratory studies report wide ranges of diazotrophic biomass δ^(15)N (from −3.6‰ to +0.5‰ for Mo-based nitrogen fixation). This variation could be partly explained by the release of dissolved organic N (DON) that is isotopically distinct from biomass. The model nitrogen fixer Azotobacter vinelandii secretes siderophores, small molecules that aid in Fe uptake and can comprise >30% of fixed nitrogen. To test whether siderophores (and other released N) can decouple biomass δ^(15)N from the isotope effect of nitrogen fixation we measured the isotopic composition of biomass and released N in Fe-limited A. vinelandii cultures fixing nitrogen with Mo- and V-nitrogenases. We report that biomass δ^(15)N was elevated under Fe limitation with a maximum value of +1.2‰ for Mo-based nitrogen fixation. Regardless of the nitrogenase isozyme used, released nitrogen δ^(15)N was also 2–3‰ lower than biomass δ^(15)N. Siderophore nitrogen was found to have a slightly higher δ^(15)N than the rest of the DON pool but was still produced in large enough concentrations to account for increases in biomass δ15N. The low δ^(15)N of siderophores (relative to biomass) is consistent with what is known from compound specific isotope studies of the amino acids used in siderophore biosynthesis, and indicates that other amino-acid derived siderophores should also have a low δ^(15)N. The implications for studies of nitrogen fixation are discussed

    Globally important haptophyte algae use exogenous pyrimidine compounds more efficiently than thiamin

    Get PDF
    Vitamin B1 (thiamin) is a cofactor for critical enzymatic processes and is scarce in surface oceans. Several eukaryotic marine algal species thought to rely on exogenous thiamin are now known to grow equally well on the precursor 4-amino-5-hydroxymethyl-2-methylpyrimidine (HMP), including the haptophyte Emiliania huxleyi. Because the thiamin biosynthetic capacities of the diverse and ecologically important haptophyte lineage are otherwise unknown, we investigated the pathway in transcriptomes and two genomes from 30 species representing six taxonomic orders. HMP synthase is missing in data from all studied taxa, but the pathway is otherwise complete, with some enzymatic variations. Experiments on axenic species from three orders demonstrated that equivalent growth rates were supported by 1 μM HMP or thiamin amendment. Cellular thiamin quotas were quantified in the oceanic phytoplankter E. huxleyi using the thiochrome assay. E. huxleyi exhibited luxury storage in standard algal medium (1.16 ± 0.18) ☓ 10-6 pmol thiamin cell-1, whereas quotas in cultures grown under more environmentally relevant thiamin and HMP supplies (2.22 ± 0.07) ☓ 10-7 or (1.58 ± 0.14) ☓ 10-7 pmol thiamin cell-1, respectively were significantly lower than luxury values and prior estimates. HMP and its salvage-related analog 4-amino-5-aminomethyl-2-methylpyrimidine (AmMP) supported higher growth than thiamin under environmentally relevant supply levels. These compounds also sustained growth of the stramenopile alga Pelago-monas calceolata. Together with identification of a salvage protein subfamily (TENA_E) in multiple phytoplankton, the results indicate that salvaged AmMP and exogenously acquired HMP are used by several groups for thiamin production. Our studies highlight the potential importance of thiamin pathway intermediates and their analogs in shaping phytoplankton community structure. IMPORTANCE The concept that vitamin B1 (thiamin) availability in seawater controls the productivity and structure of eukaryotic phytoplankton communities has been discussed for half a century. We examined B1 biosynthesis and salvage pathways in diverse phytoplankton species. These comparative genomic analyses as well as experiments show that phytoplankton thought to require exogenous B1 not only utilize intermediate compounds to meet this need but also exhibit stronger growth on these compounds than on thiamin. Furthermore, oceanic phytoplankton have lower cellular thiamin quotas than previously reported, and salvage of intermediate compounds is likely a key mechanism for meeting B1 requirements under environmentally relevant scenarios. Thus, several lines of evidence now suggest that availability of specific precursor molecules could be more important in structuring phytoplankton communities than the vitamin itself. This understanding of preferential compound utilization and thiamin quotas will improve biogeochemical model pa-rameterization and highlights interaction networks among ocean microbes. © 2017 Gutowska et al

    The roles of B vitamins in phytoplankton nutrition: new perspectives and prospects

    Get PDF
    B vitamins play essential roles in central metabolism. These organic water-soluble molecules act as, or as part of, coenzymes within the cell. Unlike land plants, many eukaryotic algae are auxotrophic for certain B vitamins. Recent progress in algal genetic resources and environmental chemistry have promoted a renewal of interest in the role of vitamins in governing phytoplankton dynamics, and illuminated amazing versatility in phytoplankton vitamin metabolism. Accumulating evidence demonstrates metabolic complexity in the production and bioavailability of different vitamin forms, coupled with specialized acquisition strategies to salvage and remodel vitamin precursors. Here, I describe recent advances and discuss how they redefine our view of the way in which vitamins are cycled in aquatic ecosystems and their importance in structuring phytoplankton communities

    Alternatives to vitamin B 1 uptake revealed with discovery of riboswitches in multiple marine eukaryotic lineages

    Get PDF
    Vitamin B 1 (thiamine pyrophosphate, TPP) is essential to all life but scarce in ocean surface waters. In many bacteria and a few eukaryotic groups thiamine biosynthesis genes are controlled by metabolite-sensing mRNA-based gene regulators known as riboswitches. Using available genome sequences and transcriptomes generated from ecologically important marine phytoplankton, we identified 31 new eukaryotic riboswitches. These were found in alveolate, cryptophyte, haptophyte and rhizarian phytoplankton as well as taxa from two lineages previously known to have riboswitches (green algae and stramenopiles). The predicted secondary structures bear hallmarks of TPP-sensing riboswitches. Surprisingly, most of the identified riboswitches are affiliated with genes of unknown function, rather than characterized thiamine biosynthesis genes. Using qPCR and growth experiments involving two prasinophyte algae, we show that expression of these genes increases significantly under vitamin B 1 -deplete conditions relative to controls. Pathway analyses show that several algae harboring the uncharacterized genes lack one or more enzymes in the known TPP biosynthesis pathway. We demonstrate that one such alga, the major primary producer Emiliania huxleyi, grows on 4-amino-5-hydroxymethyl-2-methylpyrimidine (a thiamine precursor moiety) alone, although long thought dependent on exogenous sources of thiamine. Thus, overall, we have identified riboswitches in major eukaryotic lineages not known to undergo this form of gene regulation. In these phytoplankton groups, riboswitches are often affiliated with widespread thiamine-responsive genes with as yet uncertain roles in TPP pathways. Further, taxa with 'incomplete' TPP biosynthesis pathways do not necessarily require exogenous vitamin B 1, making vitamin control of phytoplankton blooms more complex than the current paradigm suggests. © 2014 International Society for Microbial Ecology. All rights reserved
    corecore