1,095 research outputs found

    Cenozoic evolution of Neotethys and implications for the causes of plate motions

    Get PDF
    Africa-North America-Eurasia plate circuit rotations, combined with Red Sea rotations and new estimates of crustal shortening in Iran define the Cenozoic history of the Neotethyan ocean between Arabia and Eurasia. The new constraints indicate that Arabia-Eurasia convergence has been fairly constant at 2 to 3 cm/yr since 56 Ma with slowing of Africa-Eurasia motion to <1 cm/yr near 25 Ma, coeval with the opening of the Red Sea. Ocean closure occurred no later than 10 Ma, and could have occurred prior to this time only if a large amount of continental lithosphere was subducted, suggesting that slowing of Africa significantly predated the Arabia-Eurasia collision. These kinematics imply that Africa's disconnection with the negative buoyancy of the downgoing slab of lithosphere beneath southern Eurasia slowed its motion. The slow, steady rate of northward subduction since 56 Ma contrasts with strongly variable rates of magma production in the Urumieh-Dokhtar arc, implying magma production rate in continental arcs is not linked to subduction rate

    Statics and dynamics of a cylindrical droplet under an external body force

    Full text link
    We study the rolling and sliding motion of droplets on a corrugated substrate by Molecular Dynamics simulations. Droplets are driven by an external body force (gravity) and we investigate the velocity profile and dissipation mechanisms in the steady state. The cylindrical geometry allows us to consider a large range of droplet sizes. The velocity of small droplets with a large contact angle is dominated by the friction at the substrate and the velocity of the center of mass scales like the square root of the droplet size. For large droplets or small contact angles, however, viscous dissipation of the flow inside the volume of the droplet dictates the center of mass velocity that scales linearly with the size. We derive a simple analytical description predicting the dependence of the center of mass velocity on droplet size and the slip length at the substrate. In the limit of vanishing droplet velocity we quantitatively compare our simulation results to the predictions and good agreement without adjustable parameters is found.Comment: Submitted to the Journal of Chemical Physic

    On the Simple Tensile Deformation of an Incompressible Rubber Matrix Filled with Non-Adherent Rigid Spheres of Uniform Size Distribution

    Get PDF
    Two striking features revealed in a photograph (cf Figure 1) of a thin film of rubber binder highly filled with glass beads are: a) that the growth of voids around particles increases with increasing strain and b) that the preferred direction of the void growth seems to be in the direction of the applied macroscopic strain. It is obvious that the local stress field around particles in a deformed composite is not as high as it would be if the binder did not pull away from the filler particles. On the other hand, because of the high rigidity of the particles relative to the binder, the local stress field in the binder will still be significantly higher than the average macroscopic stress field. It is of interest to define both this stress field and the associated dilatation in terms of a simple model

    Renormalized one-loop theory of correlations in polymer blends

    Full text link
    The renormalized one-loop theory is a coarse-grained theory of corrections to the self-consistent field theory (SCFT) of polymer liquids, and to the random phase approximation (RPA) theory of composition fluctuations. We present predictions of corrections to the RPA for the structure function S(k)S(k) and to the random walk model of single-chain statics in binary homopolymer blends. We consider an apparent interaction parameter χa\chi_{a} that is defined by applying the RPA to the small kk limit of S(k)S(k). The predicted deviation of χa\chi_{a} from its long chain limit is proportional to N−1/2N^{-1/2}, where NN is chain length. This deviation is positive (i.e., destabilizing) for weakly non-ideal mixtures, with \chi_{a} N \alt 1, but negative (stabilizing) near the critical point. The positive correction to χa\chi_{a} for low values of χaN\chi_{a} N is a result of the fact that monomers in mixtures of shorter chains are slightly less strongly shielded from intermolecular contacts. The depression in χa\chi_{a} near the critical point is a result of long-wavelength composition fluctuations. The one-loop theory predicts a shift in the critical temperature of O(N−1/2){\cal O}(N^{-1/2}), which is much greater than the predicted O(N−1){\cal O}(N^{-1}) width of the Ginzburg region. Chain dimensions deviate slightly from those of a random walk even in a one-component melt, and contract slightly with increasing χe\chi_{e}. Predictions for S(k)S(k) and single-chain properties are compared to published lattice Monte Carlo simulations.Comment: submitted to J. Chem. Phy

    Ion-ion correlations: an improved one-component plasma correction

    Full text link
    Based on a Debye-Hueckel approach to the one-component plasma we propose a new free energy for incorporating ionic correlations into Poisson-Boltzmann like theories. Its derivation employs the exclusion of the charged background in the vicinity of the central ion, thereby yielding a thermodynamically stable free energy density, applicable within a local density approximation. This is an improvement over the existing Debye-Hueckel plus hole theory, which in this situation suffers from a "structuring catastrophe". For the simple example of a strongly charged stiff rod surrounded by its counterions we demonstrate that the Poisson-Boltzmann free energy functional augmented by our new correction accounts for the correlations present in this system when compared to molecular dynamics simulations.Comment: 5 pages, 2 figures, revtex styl

    Inversion of perturbation series

    Full text link
    We investigate the inversion of perturbation series and its resummation, and prove that it is related to a recently developed parametric perturbation theory. Results for some illustrative examples show that in some cases series reversion may improve the accuracy of the results

    Free Thermal Convection Driven by Nonlocal Effects

    Full text link
    We report and explain a convective phenomenon observed in molecular dynamics simulations that cannot be classified either as a hydrodynamics instability nor as a macroscopically forced convection. Two complementary arguments show that the velocity field by a thermalizing wall is proportional to the ratio between the heat flux and the pressure. This prediction is quantitatively corroborated by our simulations.Comment: RevTex, figures is eps, submited for publicatio

    Diffusion-Limited Coalescence with Finite Reaction Rates in One Dimension

    Full text link
    We study the diffusion-limited process A+A→AA+A\to A in one dimension, with finite reaction rates. We develop an approximation scheme based on the method of Inter-Particle Distribution Functions (IPDF), which was formerly used for the exact solution of the same process with infinite reaction rate. The approximation becomes exact in the very early time regime (or the reaction-controlled limit) and in the long time (diffusion-controlled) asymptotic limit. For the intermediate time regime, we obtain a simple interpolative behavior between these two limits. We also study the coalescence process (with finite reaction rates) with the back reaction A→A+AA\to A+A, and in the presence of particle input. In each of these cases the system reaches a non-trivial steady state with a finite concentration of particles. Theoretical predictions for the concentration time dependence and for the IPDF are compared to computer simulations. P. A. C. S. Numbers: 82.20.Mj 02.50.+s 05.40.+j 05.70.LnComment: 13 pages (and 4 figures), plain TeX, SISSA-94-0

    Lattice Model for water-solute mixtures

    Full text link
    A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting on, hydrophilic, inert and hydrophobic interactions. Extensive Monte Carlo simulations were carried out and the behavior of pure components and the excess properties of the mixtures have been studied. The pure components: water (solvent) and solute, have quite similar phase diagrams, presenting: gas, low density liquid, and high density liquid phases. In the case of solute, the regions of coexistence are substantially reduced when compared with both the water and the standard ALG models. A numerical procedure has been developed in order to attain series of results at constant pressure from simulations of the lattice gas model in the grand canonical ensemble. The excess properties of the mixtures: volume and enthalpy as the function of the solute fraction have been studied for different interaction parameters of the model. Our model is able to reproduce qualitatively well the excess volume and enthalpy for different aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the excess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the behavior of large alcohols such as, propanol, butanol and pentanol. For last case (hydrophobic), the excess properties reproduce the behavior of ionic liquids in aqueous solution.Comment: 28 pages, 13 figure

    Phonon Life-times from first principles self consistent lattice dynamics

    Full text link
    Phonon lifetime calculations from first principles usually rely on time consuming molecular dynamics calculations, or density functional perturbation theory (DFPT) where the zero temperature crystal structure is assumed to be dynamically stable. Here a new and effective method for calculating phonon lifetimes from first principles is presented, not limited to crystal structures stable at 0 K, and potentially much more effective than most corresponding molecular dynamics calculations. The method is based on the recently developed self consistent lattice dynamical method and is here tested by calculating the bcc phase phonon lifetimes of Li, Na, Ti and Zr, as representative examples.Comment: 4 pages, 4 figur
    • …
    corecore