1,160 research outputs found

    Report of the panel on lithospheric structure and evolution, section 3

    Get PDF
    The panel concluded that NASA can contribute to developing a refined understanding of the compositional, structural, and thermal differences between continental and oceanic lithosphere through a vigorous program in solid Earth science with the following objectives: determine the most fundamental geophysical property of the planet; determine the global gravity field to an accuracy of a few milliGals at wavelengths of 100 km or less; determine the global lithospheric magnetic field to a few nanoTeslas at a wavelength of 100 km; determine how the lithosphere has evolved to its present state via acquiring geologic remote sensing data over all the continents

    Reply to Kornfeld and Titus: No distraction from misconduct

    Get PDF

    Scientific basis for safely shutting in the Macondo Well after the April 20, 2010 Deepwater Horizon blowout

    Get PDF
    As part of the government response to the Deepwater Horizon blowout, a Well Integrity Team evaluated the geologic hazards of shutting in the Macondo Well at the seafloor and determined the conditions under which it could safely be undertaken. Of particular concern was the possibility that, under the anticipated high shut-in pressures, oil could leak out of the well casing below the seafloor. Such a leak could lead to new geologic pathways for hydrocarbon release to the Gulf of Mexico. Evaluating this hazard required analyses of 2D and 3D seismic surveys, seafloor bathymetry, sediment properties, geophysical well logs, and drilling data to assess the geological, hydrological, and geomechanical conditions around the Macondo Well. After the well was successfully capped and shut in on July 15, 2010, a variety of monitoring activities were used to assess subsurface well integrity. These activities included acquisition of wellhead pressure data, marine multichannel seismic pro- files, seafloor and water-column sonar surveys, and wellhead visual/acoustic monitoring. These data showed that the Macondo Well was not leaking after shut in, and therefore, it could remain safely shut until reservoir pressures were suppressed (killed) with heavy drilling mud and the well was sealed with cement

    Evaluating Similarity Measures for Dataset Search

    Get PDF

    Report of the panel on plate motion and deformation, section 2

    Get PDF
    Given here is a panel report on the goals and objectives, requirements and recommendations for the investigation of plate motion and deformation. The goals are to refine our knowledge of plate motions, study regional and local deformation, and contribute to the solution of important societal problems. The requirements include basic space-positioning measurements, the use of global and regional data sets obtained with space-based techniques, topographic and geoid data to help characterize the internal processes that shape the planet, gravity data to study the density structure at depth and help determine the driving mechanisms for plate tectonics, and satellite images to map lithology, structure and morphology. The most important recommendation of the panel is for the implementation of a world-wide space-geodetic fiducial network to provide a systematic and uniform measure of global strain

    Biomechanics of predatorā€“prey arms race in lion, zebra, cheetah and impala

    Get PDF
    The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predatorā€“prey pairs, lionā€“zebra and cheetahā€“impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predatorā€“prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate

    Spatial and temporal overlaps between leopards (Panthera pardus) and their competitors in the African large predator guild

    Get PDF
    Understanding the mechanisms facilitating coexistence within species assemblages is a key consideration for conservation as intact assemblages are necessary for maintaining full ecosystem function. The African large predator guild represents one of the few remaining functionally intact large predator assemblages on Earth, and as such, represents a unique study system to understand competitive interactions. Yet, relatively little is known of the coexistence mechanisms between some of its intermediately sized members, particularly leopards (Panthera pardus). Here, we use overlapping spatioā€temporal activity and GPS data on lions (Panthera leo), leopards, African wild dogs (Lycaon pictus) and cheetahs (Acinonyx jubatus) to examine spatial interactions and temporal partitioning between leopards and other guild members in northern Botswana. We found that at the population level, male leopard space use and activity patterns were largely unaffected by intraguild competitors. Leopards showed minimal movement coherence with competitors (avoidance or attraction) when moving through areas of home ranges shared with intraguild species. Moreover, we found evidence to support the hypothesis that guild speciesā€™ activity patterns are primarily driven by light availability rather than predator avoidance. Our results suggest predator avoidance has a limited impact on broadā€scale leopard spatioā€temporal niches, with aspects of the leopardsā€™ ecology and life history likely facilitating its ability to thrive in close proximity to competitors. Considered alongside other studies, our results suggest that landscapeā€level approaches to conservation may be suitable for aiding leopard conservation

    Dynamics of direct inter-pack encounters in endangered African wild dogs

    Get PDF
    Aggressive encounters may have important life history consequences due to the potential for injury and death, disease transmission, dispersal opportunities or exclusion from key areas of the home range. Despite this, little is known of their detailed dynamics, mainly due to the difficulties of directly observing encounters in detail. Here, we describe detailed spatial dynamics of inter-pack encounters in African wild dogs (Lycaon pictus), using data from custom-built high-resolution GPS collars in 11 free-ranging packs. On average, each pack encountered another pack approximately every 7 weeks and met each neighbour twice each year. Surprisingly, intruders were more likely to win encounters (winning 78.6% of encounters by remaining closer to the site in the short term). However, intruders did tend to move farther than residents toward their own range core in the short-term (1 h) post-encounter, and if this were used to indicate losing an encounter, then the majority (73.3%) of encounters were won by residents. Surprisingly, relative pack size had little effect on encounter outcome, and injuries were rare (<15% of encounters). These results highlight the difficulty of remotely scoring encounters involving mobile participants away from static defendable food resources. Although inter-pack range overlap was reduced following an encounter, encounter outcome did not seem to drive this, as both packs shifted their ranges post-encounter. Our results indicate that inter-pack encounters may be lower risk than previously suggested and do not appear to influence long-term movement and ranging
    • ā€¦
    corecore