261 research outputs found
Heteronuclear d-d and d-f Ru(II)/M complexes [M = Gd(III), Yb(III), Nd(III), Zn(II) or Mn(II)] of ligands combining phenanthroline and aminocarboxylate binding sites: combined relaxivity, cell imaging and photophysical studies
A ligand skeleton combining a 1,10-phenanthroline (phen) binding site and one or two heptadentate N3O4 aminocarboxylate binding sites, connected via alkyne spacers to the phen C3 or C3/C8 positions, has been used to prepare a range of heteronuclear Ru·M and Ru·M2 complexes which have been evaluated for their cell imaging, relaxivity, and photophysical properties. In all cases the phen unit is bound to a {Ru(bipy)2}2+ unit to give a phosphorescent {Ru(bipy)2(phen)}2+ luminophore, and the pendant aminocarboxylate sites are occupied by a secondary metal ion M which is either a lanthanide [Gd(III), Nd(III), Yb(III)] or another d-block ion [Zn(II), Mn(II)]. When M = Gd(III) or Mn(II) these ions provide the complexes with a high relaxivity for water; in the case of Ru·Gd and Ru·Gd2 the combination of high water relaxivity and 3MLCT phosphorescence from the Ru(II) unit provides the possibility of two different types of imaging modality in a single molecular probe. In the case of Ru·Mn and Ru·Mn2 the Ru(II)-based phosphorescence is substantially reduced compared to the control complexes Ru·Zn and Ru·Zn2 due to the quenching effect of the Mn(II) centres. Ultrafast transient absorption spectroscopy studies on Ru·Mn (and Ru·Zn as a non-quenched control) reveal the occurrence of fast (<1 ns) PET in Ru·Mn, from the Mn(II) ion to the Ru(II)-based 3MLCT state, i.e. MnII–(phen˙−)–RuIII → MnIII–(phen˙−)–RuII; the resulting MnIII–(phen˙−) state decays with τ ≈ 5 ns and is non-luminescent. This occurs in conformers when an ET pathway is facilitated by a planar, conjugated bridging ligand conformation connecting the two units across the alkyne bridge but does not occur in conformers where the two units are electronically decoupled by a twisted conformation of the bridging ligand. Computational studies (DFT) on Ru·Mn confirmed both the occurrence of the PET quenching pathway and its dependence on molecular conformation. In the complexes Ru·Ln and Ru·Ln2 (Ln = Nd, Yb), sensitised near-infrared luminescence from Nd(III) or Yb(III) is observed following photoinduced energy-transfer from the Ru(II) core, with Ru → Nd energy-transfer being faster than Ru → Yb energy-transfer due to the higher density of energy-accepting states on Nd(III)
Giant positive magnetoresistance in metallic VOx thin films
We report on giant positive magnetoresistance effect observed in VOx thin
films, epitaxially grown on SrTiO3 substrate. The MR effect depends strongly on
temperature and oxygen content and is anisotropic. At low temperatures its
magnitude reaches 70% in a magnetic field of 5 T. Strong electron-electron
interactions in the presence of strong disorder may qualitatively explain the
results. An alternative explanation, related to a possible magnetic
instability, is also discussed.Comment: 4 pages, 5 figures included in the text, references update
Three-body non-additive forces between spin-polarized alkali atoms
Three-body non-additive forces in systems of three spin-polarized alkali
atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio
calculations. The non-additive forces are found to be large, especially near
the equilateral equilibrium geometries. For Li, they increase the three-atom
potential well depth by a factor of 4 and reduce the equilibrium interatomic
distance by 0.9 A. The non-additive forces originate principally from chemical
bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files
Acute myeloid leukemia maturation lineage influences residual disease and relapse following differentiation therapy
Acute myeloid leukemia (AML) is a malignancy of immature progenitor cells. AML differentiation therapies trigger leukemia maturation and can induce remission, but relapse is prevalent and its cellular origin is unclear. Here we describe high resolution analysis of differentiation therapy response and relapse in a mouse AML model. Triggering leukemia differentiation in this model invariably produces two phenotypically distinct mature myeloid lineages in vivo. Leukemia-derived neutrophils dominate the initial wave of leukemia differentiation but clear rapidly and do not contribute to residual disease. In contrast, a therapyinduced population of mature AML-derived eosinophil-like cells persists during remission, often in extramedullary organs. Using genetic approaches we show that restricting therapy induced leukemia maturation to the short-lived neutrophil lineage markedly reduces relapse rates and can yield cure. These results indicate that relapse can originate from therapy resistant mature AML cells, and suggest differentiation therapy combined with targeted eradication of mature leukemia-derived lineages may improve disease outcome.Steven Ngo, Ethan P. Oxley, Margherita Ghisi, Maximilian M. Garwood, Mark D. McKenzie, Helen L. Mitchell, Peter Kanellakis, Olivia Susanto, Michael J. Hickey, Andrew C. Perkins, Benjamin T. Kile, Ross A. Dickin
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Health Status and Health Care Use Among Adolescents Identified With and Without Autism in Early Childhood — Four U.S. Sites, 2018–2020
Persons identified in early childhood as having autism spectrum disorder (autism) often have co-occurring health problems that extend into adolescence (1–3). Although only limited data exist on their health and use of health care services as they transition to adolescence, emerging data suggest that a minority of these persons receive recommended guidance* from their primary care providers (PCPs) starting at age 12 years to ensure a planned transition from pediatric to adult health care (4,5). To address this gap in data, researchers analyzed preliminary data from a follow-up survey of parents and guardians of adolescents aged 12–16 years who previously participated in the Study to Explore Early Development (https://www.cdc.gov/ncbddd/autism/seed.html). The adolescents were originally studied at ages 2–5 years and identified at that age as having autism (autism group) or as general population controls (control group). Adjusted prevalence ratios (aPRs) that accounted for differences in demographic characteristics were used to compare outcomes between groups. Adolescents in the autism group were more likely than were those in the control group to have physical difficulties (21.2% versus 1.6%;aPR = 11.6;95% confidence interval [CI] = 4.2–31.9), and to have additional mental health or other condition
Conserved IKAROS-regulated genes associated with B-progenitor acute lymphoblastic leukemia outcome
Genetic alterations disrupting the transcription factor IKZF1 (encoding IKAROS) are associated with poor outcome in B lineage acute lymphoblastic leukemia (B-ALL) and occur in >70% of the high-risk BCR-ABL1+ (Ph+) and Ph-like disease subtypes. To examine IKAROS function in this context, we have developed novel mouse models allowing reversible RNAi-based control of Ikaros expression in established B-ALL in vivo. Notably, leukemias driven by combined BCR-ABL1 expression and Ikaros suppression rapidly regress when endogenous Ikaros is restored, causing sustained disease remission or ablation. Comparison of transcriptional profiles accompanying dynamic Ikaros perturbation in murine B-ALL in vivo with two independent human B-ALL cohorts identified nine evolutionarily conserved IKAROS-repressed genes. Notably, high expression of six of these genes is associated with inferior event-free survival in both patient cohorts. Among them are EMP1, which was recently implicated in B-ALL proliferation and prednisolone resistance, and the novel target CTNND1, encoding P120-catenin. We demonstrate that elevated Ctnnd1 expression contributes to maintenance of murine B-ALL cells with compromised Ikaros function. These results suggest that IKZF1 alterations in B-ALL leads to induction of multiple genes associated with proliferation and treatment resistance, identifying potential new therapeutic targets for high-risk disease
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
An Observational Overview of Solar Flares
We present an overview of solar flares and associated phenomena, drawing upon
a wide range of observational data primarily from the RHESSI era. Following an
introductory discussion and overview of the status of observational
capabilities, the article is split into topical sections which deal with
different areas of flare phenomena (footpoints and ribbons, coronal sources,
relationship to coronal mass ejections) and their interconnections. We also
discuss flare soft X-ray spectroscopy and the energetics of the process. The
emphasis is to describe the observations from multiple points of view, while
bearing in mind the models that link them to each other and to theory. The
present theoretical and observational understanding of solar flares is far from
complete, so we conclude with a brief discussion of models, and a list of
missing but important observations.Comment: This is an article for a monograph on the physics of solar flares,
inspired by RHESSI observations. The individual articles are to appear in
Space Science Reviews (2011
- …