254 research outputs found

    The Atomic to Molecular Transition in Galaxies. I: An Analytic Approximation for Photodissociation Fronts in Finite Clouds

    Full text link
    In this series of papers we study the structure of the atomic to molecular transition in the giant atomic-molecular complexes that are the repositories of most molecular gas in galaxies, with the ultimate goal of attaining a better understanding of what determines galaxies' molecular content. Here we derive an approximate analytic solution for the structure of a photodissociation region (PDR) in a cloud of finite size that is bathed in an external dissociating radiation field. Our solution extends previous work, which with few exceptions has been restricted to a one-dimensional treatment of the radiation field. We show that our analytic results compare favorably to exact numerical calculations in the one-dimensional limit. However, our more general geometry provides a more realistic representation than a semi-infinite slab for atomic-molecular complexes exposed to the interstellar radiation field, particularly in environments such as low-metallicity dwarf galaxies where the curvature and finite size of the atomic envelope cannot be neglected. For clouds that are at least 20% molecular we obtain analytic expressions for the molecular fraction in terms of properties of the gas and radiation field that are accurate to tens of percent, while for clouds of lower molecular content we obtain upper limits. As a side benefit, our analysis helps clarify when self-shielding is the dominant process in H_2 formation, and under what circumstances shielding by dust makes a significant contribution.Comment: 19 pages, 11 figures, emulateapj style, accepted to ApJ. Discussion slightly changed from previous version, and some new analytic approximations added. Underlying results unchange

    Table of Contents and Prologue

    Get PDF
    Editorial board, Table of contents, and Prologue, an introduction to volume 2

    Inverse Thermoreversible Mechanical Stiffening and Birefringence in a Methylcellulose/Cellulose Nanocrystal Hydrogel

    Get PDF
    We show that composite hydrogels comprising methyl cellulose (MC) and cellulose nanocrystal (CNC) colloidal rods display a reversible and enhanced rheological storage modulus and optical birefringence upon heating, i.e., inverse thermoreversibility. Dynamic rheology, quantitative polarized optical microscopy, isothermal titration calorimetry (ITC), circular dichroism (CD), and scanning and transmission electron microscopy (SEM and TEM) were used for characterization. The concentration of CNCs in aqueous media was varied up to 3.5 wt % (i.e, keeping the concentration below the critical aq concentration) while maintaining the MC aq concentration at 1.0 wt %. At 20 degrees C, MC/CNC underwent gelation upon passing the CNC concentration of 1.5 wt %. At this point, the storage modulus (G') reached a plateau, and the birefringence underwent a stepwise increase, thus suggesting a percolative phenomenon. The storage modulus (G') of the composite gels was an order of magnitude higher at 60 degrees C compared to that at 20 degrees C. ITC results suggested that, at 60 degrees C, the CNC rods were entropically driven to interact with MC chains, which according to recent studies collapse at this temperature into ring-like, colloidal-scale persistent fibrils with hollow cross-sections. Consequently, the tendency of the MC to form more persistent aggregates promotes the interactions between the CNC chiral aggregates towards enhanced storage modulus and birefringence. At room temperature, ITC shows enthalpic binding between CNCs and MC with the latter comprising aqueous, molecularly dispersed polymer chains that lead to looser and less birefringent material. TEM, SEM, and CD indicate CNC chiral fragments within a MC/CNC composite gel. Thus, MC/CNC hybrid networks offer materials with tunable rheological properties and access to liquid crystalline properties at low CNC concentrations.Peer reviewe

    An Infrared through Radio Study of the Properties and Evolution of IRDC Clumps

    Full text link
    We examine the physical properties and evolutionary stages of a sample of 17 clumps within 8 Infrared Dark Clouds (IRDCs) by combining existing infrared, millimeter, and radio data with new Bolocam Galactic Plane Survey (BGPS) 1.1 mm data, VLA radio continuum data, and HHT dense gas (HCO+ and N2H+) spectroscopic data. We combine literature studies of star formation tracers and dust temperatures within IRDCs with our search for ultra-compact (UC) HII regions to discuss a possible evolutionary sequence for IRDC clumps. In addition, we perform an analysis of mass tracers in IRDCs and find that 8 micron extinction masses and 1.1 mm Bolocam Galactic Plane Survey (BGPS) masses are complementary mass tracers in IRDCs except for the most active clumps (notably those containing UCHII regions), for which both mass tracers suffer biases. We find that the measured virial masses in IRDC clumps are uniformly higher than the measured dust continuum masses on the scale of ~1 pc. We use 13CO, HCO+, and N2H+ to study the molecular gas properties of IRDCs and do not see any evidence of chemical differentiation between hot and cold clumps on the scale of ~1 pc. However, both HCO+ and N2H+ are brighter in active clumps, due to an increase in temperature and/or density. We report the identification of four UCHII regions embedded within IRDC clumps and find that UCHII regions are associated with bright (>1 Jy) 24 micron point sources, and that the brightest UCHII regions are associated with "diffuse red clumps" (an extended enhancement at 8 micron). The broad stages of the discussed evolutionary sequence (from a quiescent clump to an embedded HII region) are supported by literature dust temperature estimates; however, no sequential nature can be inferred between the individual star formation tracers.Comment: 33 pages, 26 figures, 6 tables, accepted for publication in ApJ. Full resolution version available here: http://casa.colorado.edu/~battersb/Publications.htm

    MAE 4344 senior design: MAE 3723 lab project - Final report

    Get PDF
    MAE 3723 Systems I has just added a Lab Section where students can have a hands on experience with concepts of system design. The objective of our project is to develop a set of physical systems that can be used in the MAE 3723 Lab Section. The physical systems need to demonstrate important concepts from MAE 3723 Theory Section and have the ability to be concealed from view if desired. Instructors and Lab personnel will also need to be able to reproduce the physical systems

    Polymicrobial oral biofilm models: simplifying the complex

    Get PDF
    Over the past century, numerous studies have used oral biofilm models to investigate growth kinetics, biofilm formation, structure and composition, antimicrobial susceptibility and host–pathogen interactions. In vivo animal models provide useful models of some oral diseases; however, these are expensive and carry vast ethical implications. Oral biofilms grown or maintained in vitro offer a useful platform for certain studies and have the advantages of being inexpensive to establish and easy to reproduce and manipulate. In addition, a wide range of variables can be monitored and adjusted to mimic the dynamic environmental changes at different sites in the oral cavity, such as pH, temperature, salivary and gingival crevicular fluid flow rates, or microbial composition. This review provides a detailed insight for early-career oral science researchers into how the biofilm models used in oral research have progressed and improved over the years, their advantages and disadvantages, and how such systems have contributed to our current understanding of oral disease pathogenesis and aetiology

    Monitoring the US ATLAS Network Infrastructure with perfSONAR-PS

    Full text link
    Global scientific collaborations, such as ATLAS, continue to push the network requirements envelope. Data movement in this collaboration is routinely including the regular exchange of petabytes of datasets between the collection and analysis facilities in the coming years. These requirements place a high emphasis on networks functioning at peak efficiency and availability; the lack thereof could mean critical delays in the overall scientific progress of distributed data-intensive experiments like ATLAS. Network operations staff routinely must deal with problems deep in the infrastructure; this may be as benign as replacing a failing piece of equipment, or as complex as dealing with a multi-domain path that is experiencing data loss. In either case, it is crucial that effective monitoring and performance analysis tools are available to ease the burden of management. We will report on our experiences deploying and using the perfSONAR-PS Performance Toolkit at ATLAS sites in the United States. This software creates a dedicated monitoring server, capable of collecting and performing a wide range of passive and active network measurements. Each independent instance is managed locally, but able to federate on a global scale; enabling a full view of the network infrastructure that spans domain boundaries. This information, available through web service interfaces, can easily be retrieved to create customized applications. The US ATLAS collaboration has developed a centralized “dashboard” offering network administrators, users, and decision makers the ability to see the performance of the network at a glance. The dashboard framework includes the ability to notify users (alarm) when problems are found, thus allowing rapid response to potential problems and making perfSONAR-PS crucial to the operation of our distributed computing infrastructure.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98635/1/1742-6596_396_4_042038.pd

    The Atomic to Molecular Transition in Galaxies. II: HI and H_2 Column Densities

    Full text link
    Gas in galactic disks is collected by gravitational instabilities into giant atomic-molecular complexes, but only the inner, molecular parts of these structures are able to collapse to form stars. Determining what controls the ratio of atomic to molecular hydrogen in complexes is therefore a significant problem in star formation and galactic evolution. In this paper we use the model of H_2 formation, dissociation, and shielding developed in the previous paper in this series to make theoretical predictions for atomic to molecular ratios as a function of galactic properties. We find that the molecular fraction in a galaxy is determined primarily by its column density and secondarily by its metallicity, and is to good approximation independent of the strength of the interstellar radiation field. We show that the column of atomic hydrogen required to shield a molecular region against dissociation is ~10 Msun pc^-2 at solar metallicity. We compare our model to data from recent surveys of the Milky Way and of nearby galaxies, and show that the both the primary dependence of molecular fraction on column density and the secondary dependence on metallicity that we predict are in good agreement with observed galaxy properties.Comment: Accepted to ApJ. 22 pages, 13 figures, emulateapj format. This version corrects a minor error in the binning procedure in section 4.1.2. The remainder of the paper is unchange
    • …
    corecore