8,305 research outputs found
Strongly interacting bosons in a disordered optical lattice
Disorder, prevalent in nature, is intimately involved in such spectacular
effects as the fractional quantum Hall effect and vortex pinning in type-II
superconductors. Understanding the role of disorder is therefore of fundamental
interest to materials research and condensed matter physics. Universal
behavior, such as Anderson localization, in disordered non-interacting systems
is well understood. But, the effects of disorder combined with strong
interactions remains an outstanding challenge to theory. Here, we
experimentally probe a paradigm for disordered, strongly-correlated bosonic
systems-the disordered Bose-Hubbard (DBH) model-using a Bose-Einstein
condensate (BEC) of ultra-cold atoms trapped in a completely characterized
disordered optical lattice. We determine that disorder suppresses condensate
fraction for superfluid (SF) or coexisting SF and Mott insulator (MI) phases by
independently varying the disorder strength and the ratio of tunneling to
interaction energy. In the future, these results can constrain theories of the
DBH model and be extended to study disorder for strongly-correlated fermionic
particles.Comment: 15 pages, 4 figures updated to correct errors in referencing previous
wor
Recommended from our members
On Birthing Dancing Stars: The Need for Bounded Chaos in Information Interaction
While computers causing chaos is acommon social trope, nearly the entirety of the history of computing is dedicated to generating order. Typical interactive information retrieval tasks ask computers to support the traversal and exploration of large, complex information spaces. The implicit assumption is that they are to support users in simplifying the complexity (i.e. in creating order from chaos). But for some types of task, particularly those that involve the creative application or synthesis of knowledge or the creation of new knowledge, this assumption may be incorrect. It is increasingly evident that perfect order—and the systems we create with it—support highly-structured information tasks well, but provide poor support for less-structured tasks.We need digital information environments that help create a little more chaos from order to spark creative thinking and knowledge creation. This paper argues for the need for information systems that offerwhat we term ‘bounded chaos’, and offers research directions that may support the creation of such interface
N=2 Gauge Theories: Congruence Subgroups, Coset Graphs and Modular Surfaces
We establish a correspondence between generalized quiver gauge theories in
four dimensions and congruence subgroups of the modular group, hinging upon the
trivalent graphs which arise in both. The gauge theories and the graphs are
enumerated and their numbers are compared. The correspondence is particularly
striking for genus zero torsion-free congruence subgroups as exemplified by
those which arise in Moonshine. We analyze in detail the case of index 24,
where modular elliptic K3 surfaces emerge: here, the elliptic j-invariants can
be recast as dessins d'enfant which dictate the Seiberg-Witten curves.Comment: 42+1 pages, 5 figures; various helpful comments incorporate
Entropy measures for complex networks: Toward an information theory of complex topologies
The quantification of the complexity of networks is, today, a fundamental
problem in the physics of complex systems. A possible roadmap to solve the
problem is via extending key concepts of information theory to networks. In
this paper we propose how to define the Shannon entropy of a network ensemble
and how it relates to the Gibbs and von Neumann entropies of network ensembles.
The quantities we introduce here will play a crucial role for the formulation
of null models of networks through maximum-entropy arguments and will
contribute to inference problems emerging in the field of complex networks.Comment: (4 pages, 1 figure
MODIS information, data and control system (MIDACS) operations concepts
The MODIS Information, Data, and Control System (MIDACS) Operations Concepts Document provides a basis for the mutual understanding between the users and the designers of the MIDACS, including the requirements, operating environment, external interfaces, and development plan. In defining the concepts and scope of the system, how the MIDACS will operate as an element of the Earth Observing System (EOS) within the EosDIS environment is described. This version follows an earlier release of a preliminary draft version. The individual operations concepts for planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, data archive and distribution, and user access do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams are not yet formed; however, it is possible to develop the operations concepts based on the present concept of EosDIS, the level 1 and level 2 Functional Requirements Documents, and through interviews and meetings with key members of the scientific community. The operations concepts were exercised through the application of representative scenarios
MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design
The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community
MODIS information, data and control system (MIDACS) level 2 functional requirements
The MODIS Information, Data and Control System (MIDACS) Level 2 Functional Requirements Document establishes the functional requirements for MIDACS and provides a basis for the mutual understanding between the users and the designers of the EosDIS, including the requirements, operating environment, external interfaces, and development plan. In defining the requirements and scope of the system, this document describes how MIDACS will operate as an element of the EOS within the EosDIS environment. This version of the Level 2 Requirements Document follows an earlier release of a preliminary draft version. The sections on functional and performance requirements do not yet fully represent the requirements of the data system needed to achieve the scientific objectives of the MODIS instruments and science teams. Indeed, the team members have not yet been selected and the team has not yet been formed; however, it has been possible to identify many relevant requirements based on the present concept of EosDIS and through interviews and meetings with key members of the scientific community. These requirements have been grouped by functional component of the data system, and by function within each component. These requirements have been merged with the complete set of Level 1 and Level 2 context diagrams, data flow diagrams, and data dictionary
Asymptotic behavior of the number of Eulerian orientations of graphs
We consider the class of simple graphs with large algebraic connectivity (the
second-smallest eigenvalue of the Laplacian matrix). For this class of graphs
we determine the asymptotic behavior of the number of Eulerian orientations. In
addition, we establish some new properties of the Laplacian matrix, as well as
an estimate of a conditionality of matrices with the asymptotic diagonal
predominanceComment: arXiv admin note: text overlap with arXiv:1104.304
Pairing, crystallization and string correlations of mass-imbalanced atomic mixtures in one-dimensional optical lattices
We numerically determine the very rich phase diagram of mass-imbalanced
binary mixtures of hardcore bosons (or equivalently -- fermions, or
hardcore-Bose/Fermi mixtures) loaded in one-dimensional optical lattices.
Focusing on commensurate fillings away from half filling, we find a strong
asymmetry between attractive and repulsive interactions. Attraction is found to
always lead to pairing, associated with a spin gap, and to pair crystallization
for very strong mass imbalance. In the repulsive case the two atomic components
remain instead fully gapless over a large parameter range; only a very strong
mass imbalance leads to the opening of a spin gap. The spin-gap phase is the
precursor of a crystalline phase occurring for an even stronger mass imbalance.
The fundamental asymmetry of the phase diagram is at odds with recent
theoretical predictions, and can be tested directly via time-of-flight
experiments on trapped cold atoms.Comment: 4 pages, 4 figures + Supplementary Materia
The Kinetic Activation-Relaxation Technique: A Powerful Off-lattice On-the-fly Kinetic Monte Carlo Algorithm
Many materials science phenomena, such as growth and self-organisation, are
dominated by activated diffusion processes and occur on timescales that are
well beyond the reach of standard-molecular dynamics simulations. Kinetic Monte
Carlo (KMC) schemes make it possible to overcome this limitation and achieve
experimental timescales. However, most KMC approaches proceed by discretizing
the problem in space in order to identify, from the outset, a fixed set of
barriers that are used throughout the simulations, limiting the range of
problems that can be addressed. Here, we propose a more flexible approach --
the kinetic activation-relaxation technique (k-ART) -- which lifts these
constraints. Our method is based on an off-lattice, self-learning, on-the-fly
identification and evaluation of activation barriers using ART and a
topological description of events. The validity and power of the method are
demonstrated through the study of vacancy diffusion in crystalline silicon.Comment: 5 pages, 4 figure
- …