1,898 research outputs found

    Wrinkling of a bilayer membrane

    Get PDF
    The buckling of elastic bodies is a common phenomenon in the mechanics of solids. Wrinkling of membranes can often be interpreted as buckling under constraints that prohibit large amplitude deformation. We present a combination of analytic calculations, experiments, and simulations to understand wrinkling patterns generated in a bilayer membrane. The model membrane is composed of a flexible spherical shell that is under tension and that is circumscribed by a stiff, essentially incompressible strip with bending modulus B. When the tension is reduced sufficiently to a value \sigma, the strip forms wrinkles with a uniform wavelength found theoretically and experimentally to be \lambda = 2\pi(B/\sigma)^{1/3}. Defects in this pattern appear for rapid changes in tension. Comparison between experiment and simulation further shows that, with larger reduction of tension, a second generation of wrinkles with longer wavelength appears only when B is sufficiently small.Comment: 9 pages, 5 color figure

    Perfect Information Stochastic Priority Games

    Get PDF
    International audienceWe introduce stochastic priority games - a new class of perfect information stochastic games. These games can take two different, but equivalent, forms. In stopping priority games a play can be stopped by the environment after a finite number of stages, however, infinite plays are also possible. In discounted priority games only infinite plays are possible and the payoff is a linear combination of the classical discount payoff and of a limit payoff evaluating the performance at infinity. Shapley games and parity games are special extreme cases of priority games

    Factors Related to Objectively Measured Physical Activity in Preschool Children

    Get PDF
    This study examined correlates of objectively measured physical activity (PA) in a diverse sample of preschool children (age 3–5 years; n=331). Accelerometer min·hr−1 of moderate-to-vigorous physical activity (MVPA) and non-sedentary activity (NSA) were the outcome measures. Correlations among potential correlates and PA ranged from r= − .12–0.26. Correlates in the final MVPA model were age, race, sex, BMI Z score, and parent perception of athletic competence, explaining 37% of the variance. The NSA model included the latter two variables, explaining 35% of the variance. Demographic factors were correlates of PA; parent perceptions of children’s competence may be important regarding preschoolers’ PA. Originally published Pediatric Exercise Science, Vol. 21, No. 2, May 200

    Bloch Equations and Completely Positive Maps

    Get PDF
    The phenomenological dissipation of the Bloch equations is reexamined in the context of completely positive maps. Such maps occur if the dissipation arises from a reduction of a unitary evolution of a system coupled to a reservoir. In such a case the reduced dynamics for the system alone will always yield completely positive maps of the density operator. We show that, for Markovian Bloch maps, the requirement of complete positivity imposes some Bloch inequalities on the phenomenological damping constants. For non-Markovian Bloch maps some kind of Bloch inequalities involving eigenvalues of the damping basis can be established as well. As an illustration of these general properties we use the depolarizing channel with white and colored stochastic noise.Comment: Talk given at the Conference "Quantum Challenges", Falenty, Poland, September 4-7, 2003. 21 pages, 3 figure

    Group-Based Physical Activity Trajectories in Children Transitioning from Elementary to High School

    Get PDF
    Background Physical activity has been observed repeatedly to decline as children transition into adolescence; however, few studies have explored the possibility that sub-groups of children experience unique patterns of change during this transition. The purpose of this longitudinal study was to examine the physical activity trajectories in clusters of youth transitioning from 5th to 11th grade. Methods Participants (n = 652) were recruited as 5th graders (ages 10–12 years) from elementary schools (n = 21) in two school districts. Demographic, anthropometric, and physical activity data were collected once per year when children were in 5th, 6th, 7th, 9th, and 11th grades. Children wore accelerometers for 7 consecutive days. Group-based trajectory modeling statistical techniques were applied to identify patterns of physical activity trajectories. Posterior probabilities confirmed participants’ membership in their respective group. Results Three distinct physical activity trajectories were identified. Group 1 (n = 27) remained highly active over time, and physical activity increased from ages 14 to 16 years. Group 2 (n = 365) was active at baseline, but activity declined and remained low as group members aged. Group 3 (n = 260) had the lowest levels of physical activity at all ages, and activity declined from ages 10 to 16 years. Conclusions While most children experienced a decline in physical activity as they transitioned into high school, some remained highly active and increased their level of physical activity. Future studies should test physical activity interventions for youth that are tailored for age-related trajectory groups

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page

    Topological Floquet engineering of twisted bilayer graphene

    Get PDF
    We investigate the topological properties of Floquet-engineered twisted bilayer graphene above the so-called magic angle driven by circularly polarized laser pulses. Employing a full Moiré-unit-cell tight-binding Hamiltonian based on first-principles electronic structure, we show that the band topology in the bilayer, at twisting angles above 1.05∘, essentially corresponds to the one of single-layer graphene. However, the ability to open topologically trivial gaps in this system by a bias voltage between the layers enables the full topological phase diagram to be explored, which is not possible in single-layer graphene. Circularly polarized light induces a transition to a topologically nontrivial Floquet band structure with the Berry curvature analogous to a Chern insulator. Importantly, the twisting allows for tuning electronic energy scales, which implies that the electronic bandwidth can be tailored to match realistic driving frequencies in the ultraviolet or midinfrared photon-energy regimes. This implies that Moiré superlattices are an ideal playground for combining twistronics, Floquet engineering, and strongly interacting regimes out of thermal equilibrium
    • …
    corecore