25 research outputs found

    Cholesterol ester hydrolase inhibitors reduce the production of synaptotoxic amyloid-beta oligomers

    Get PDF
    The production of amyloid-β (Aβ) is the key factor driving pathogenesis in Alzheimer's disease (AD). Increasing concentrations of Aβ within the brain cause synapse degeneration and the dementia that is characteristic of AD. Here the factors that affect the release of disease-relevant forms Aβ were studied in a cell model. 7PA2 cells expressing the human amyloid precursor protein released soluble Aβ oligomers that caused synapse damage in cultured neurons. Supernatants from 7PA2 cells treated with the cholesterol synthesis inhibitor squalestatin contained similar concentrations of Aβ42 to control cells but did not cause synapse damage in neuronal cultures. These supernatants contained reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers. Treatment of 7PA2 cells with platelet-activating factor (PAF) antagonists had similar effects; it reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers in cell supernatants. PAF activated cholesterol ester hydrolases (CEH), enzymes that released cholesterol from stores of cholesterol esters. Inhibition of CEH also reduced concentrations of Aβ42 oligomers and increased concentrations of Aβ42 monomers in cell supernatants. The Aβ monomers produced by treated cells protected neurons against Aβ oligomer-induced synapse damage. These studies indicate that pharmacological manipulation of cells can alter the ratio of Aβ monomer:oligomer released and consequently their effects on synapses

    Sialylated glycosylphosphatidylinositols suppress the production of toxic amyloid-ß oligomers

    Get PDF
    The production of amyloid-β (Aβ) is a key factor driving pathogenesis in Alzheimer's disease (AD). Increasing concentrations of soluble Aβ oligomers within the brain lead to synapse degeneration and the progressive dementia characteristic of AD. Since Aβ exists in both disease-relevant (toxic) and non-toxic forms, the factors that affected the release of toxic Aβ were studied in a cell model. 7PA2 cells expressing the human amyloid precursor protein released Aβ oligomers that caused synapse damage when incubated with cultured neurones. These Aβ oligomers had similar potency to soluble Aβ oligomers derived from the brains of Alzheimer's patients. Although the conditioned media from 7PA2 cells treated with the cellular prion protein (PrPC) contained Aβ, it did not cause synapse damage. The loss of toxicity was associated with a reduction in Aβ oligomers and an increase in Aβ monomers. The suppression of toxic Aβ release was dependent on the glycosylphosphatidylinositol (GPI) anchor attached to PrPC, and treatment of cells with specific GPIs alone reduced the production of toxic Aβ. The efficacy of GPIs was structure-dependent and the presence of sialic acid was critical. The conditioned medium from GPI-treated cells protected neurones against Aβ oligomer-induced synapse damage; neuroprotection was mediated by Aβ monomers. These studies support the hypothesis that the ratio of Aβ monomers to Aβ oligomers is a critical factor that regulates synapse damage

    Orally administered oxygen nanobubbles enhance tumor response to sonodynamic therapy

    No full text
    Suspensions of oxygen-filled bubbles are under active investigation as potential means of relieving tissue hypoxia. Intravenous administration of large quantities of bubbles is, however, undesirable. Previous work by the authors has demonstrated that tumor oxygen levels can be increased following oral administration of phospholipid stabilized oxygen nanobubbles. The aim of this study was to determine whether this would enhance the efficacy of sonodynamic therapy (SDT), which is known to be inhibited in hypoxic tissue. Experiments were conducted in a murine model of pancreatic cancer. Animals were treated with SDT (intratumoural injection of 1 mM Rose Bengal followed by exposure to 1 MHz ultrasound, 0.1 kHz pulse repetition frequency, 30% duty cycle, 3.5 W cm−2 for 3.5 minutes) either with or without a prior gavage of oxygen bubbles. A statistically significant reduction in the rate of tumor growth was observed in the groups receiving oxygen nanobubbles either 5 or 20 minutes before SDT. Separate measurements of tumor oxygen using a fiber optic probe and expression of hypoxia inducible factor (HIF)1α following tumor excision, confirmed the change in tumor oxygen levels. These findings offer a potentially promising new approach to relieving tissue hypoxia in order to facilitate cancer therapy

    Exploiting Topographical Texture To Impart Icephobicity

    No full text
    Appropriately structured topographical features that are found in nature (e.g,, the lotus leaf) or that are produced synthetically (e.g., via lithography) can impart superhydrophobic properties to surfaces. Water beads up and readily rolls off of such surfaces, making them self-cleaning. Within the past few years, scientists and engineers have begun exploring the utility of these surfaces in mitigating the icing problem prevalent in the operation of critical infrastructure such as airplanes, ships, power lines, and telecommunications equipment. An article in this issue advances our fundamental knowledge in this area by examining the dynamic impact of water droplets on both smooth and topographically structured supercooled substrates. The results illustrate that, under at least some environmental conditions, superhydrophobic surfaces can minimize or even eliminate ice formation by repelling impinging water drops before they can freeze. Subsequent research will build on these results, possibly leading to the fabrication of commercially viable and durable icephobic surfaces that mitigate the icing problem under all environmental conditions.National Research Council (U.S.) (Postdoctoral Fellowship)United States. Air ForceUnited States. ArmyXerox Foundatio
    corecore