7,481 research outputs found
Permafrost - physical aspects and carbon cycling, databases and uncertainties
Permafrost is defined as ground that remains below 0°C for at least 2 consecutive years. About 24% of the northern hemisphere land area is underlain by permafrost. The thawing of permafrost has the potential to influence the climate system through the release of carbon (C) from northern high latitude terrestrial ecosystems, but there is substantial uncertainty about the sensitivity of the C cycle to thawing permafrost. Soil C can be mobilized from permafrost in response to changes in air temperature, directional changes in water balance, fire, thermokarst, and flooding. Observation networks need to be implemented to understand responses of
permafrost and C at a range of temporal and spatial scales. The understanding gained from these observation networks needs to be integrated into modeling frameworks capable of representing how the responses of permafrost C will influence the trajectory of climate in the future
Lunar particle shadows and boundary layer experiment: Plasma and energetic particles on the Apollo 15 and 16 subsatellites
The lunar particle shadows and boundary layer experiments aboard the Apollo 15 and 16 subsatellites and scientific reduction and analysis of the data to date are discussed with emphasis on four major topics: solar particles; interplanetry particle phenomena; lunar interactions; and topology and dynamics of the magnetosphere at lunar orbit. The studies of solar and interplanetary particles concentrated on the low energy region which was essentially unexplored, and the studies of lunar interaction pointed up the transition from single particle to plasma characteristics. The analysis concentrated on the electron angular distributions as highly sensitive indicators of localized magnetization of the lunar surface. Magnetosphere experiments provided the first electric field measurements in the distant magnetotail, as well as comprehensive low energy particle measurements at lunar distance
Many-body system with a four-parameter family of point interactions in one dimension
We consider a four-parameter family of point interactions in one dimension.
This family is a generalization of the usual -function potential. We
examine a system consisting of many particles of equal masses that are
interacting pairwise through such a generalized point interaction. We follow
McGuire who obtained exact solutions for the system when the interaction is the
-function potential. We find exact bound states with the four-parameter
family. For the scattering problem, however, we have not been so successful.
This is because, as we point out, the condition of no diffraction that is
crucial in McGuire's method is not satisfied except when the four-parameter
family is essentially reduced to the -function potential.Comment: 8 pages, 4 figure
Anisotropic thermal expansion of Fe1.06Te and FeTe0.5Se0.5 single crystals
Heat capacity and anisotropic thermal expansion was measured for Fe1.06Te and
FeTe0.5Se0.5 single crystals. Previously reported phase transitions are clearly
seen in both measurements. In both cases the thermal expansion is anisotropic.
The uniaxial pressure derivatives of the superconducting transition temperature
in FeTe0.5Se0.5 inferred from the Ehrenfest relation have opposite signs for
in-plane and c-axis pressures. Whereas the Gruneisen parameters for both
materials are similar and only weakly temperature-dependent above ~ 80 K, at
low temperatures (in the magnetically ordered phase) the magnetic contribution
to the Gruneisen parameter in Fe1.06Te is significantly larger than electron
and phonon contributions combined
Personality Variation in Little Brown Bats
Animal personality or temperament refers to individual differences in behaviour that are repeatable over time and across contexts. Personality has been linked to life-history traits, energetic traits and fitness, with implications for the evolution of behaviour. Personality has been quantified for a range of taxa (e.g., fish, songbirds, small mammals) but, so far, there has been little work on personality in bats, despite their diversity and potential as a model taxon for comparative studies. We used a novel environment test to quantify personality in little brown bats (Myotis lucifugus) and assess the short-term repeatability of a range of behaviours. We tested the hypothesis that development influences values of personality traits and predicted that trait values associated with activity would increase between newly volant, pre-weaning young-of-the-year (YOY) and more mature, self-sufficient YOY. We identified personality dimensions that were consistent with past studies of other taxa and found that these traits were repeatable over a 24-hour period. Consistent with our prediction, older YOY captured at a fall swarming site prior to hibernation had higher activity scores than younger YOY bats captured at a maternity colony, suggesting that personality traits vary as development progresses in YOY bats. Thus, we found evidence of short-term consistency of personality within individuals but with the potential for temporal flexibility of traits, depending on age."Funding was provided by a Natural Sciences and Engineering Research Council (NSERC) Canada Graduate Scholarship to AKM and post-doctoral fellowship to LPM as well as grants to CKRW from NSERC, the Canada Foundation for Innovation, the Manitoba Research and Innovation Fund and Manitoba Hydro Forest Enhancement Program."https://journals.plos.org/plosone/article?id=10.1371/journal.pone.008023
Dephasing Effects by Ferromagnetic Boundary on Resistivity in Disordered Metallic Layer
The resistivity of disordered metallic layer sandwiched by two ferromagnetic
layers at low-temperature is investigated theoretically. It is shown that the
magnetic field acting at the interface does not affect the classical Boltzmann
resistivity but causes a dephasing among electrons in the presence of the
spin-orbit interaction, suppressing the anti-localization due to the spin-orbit
interaction. The dephasing turns out to be stronger in the case where the
magnetization of the two layers is parallel, contributing to a positive
magnetoresistance close to a switching field at low temperature.Comment: 11 pages, 3 figures. Title modified in journal versio
Exact calculation of spectral properties of a particle interacting with a one dimensional fermionic system
Using the Bethe ansatz analysis as was reformulated by Edwards, we calculate
the spectral properties of a particle interacting with a bath of fermions in
one dimension for the case of equal particle-fermion masses. These are directly
related to singularities apparent in optical experiments in one dimensional
systems. The orthogonality catastrophe for the case of an infinite particle
mass survives in the limit of equal masses. We find that the exponent
of the quasiparticle weight, is different for the two
cases, and proportional to their respective phaseshifts at the Fermi surface;
we present a simple physical argument for this difference. We also show that
these exponents describe the low energy behavior of the spectral function, for
repulsive as well as attractive interaction.Comment: 22 pages + 1 postscript figure, REVTE
Perceptions of Treatment Plan Goals of People in Psychiatric Rehabilitation
Collaborative treatment planning is a process by which providers and consumers work together to set goals for treatment, choose between alternative services, and establish a plan. Research has not examined consumers’ views of their treatment plan goals. The present study examined ways in which consumers react to their treatment plan goals. Twenty-one interviews with Veterans engaged in psychiatric rehabilitation regarding goals listed in their treatment plan were analyzed using inductive content analysis. Reactions to treatment plan goals are reported. Analyses indicate people do not vary in a linear degree regarding agreement with treatment plan goals. Clinicians and researchers should examine the extent to which treatment plan goals are consistent with the consumer’s personal goals and self-concept
VLA Survey of Dense Gas in Extended Green Objects: Prevalence of 25 GHz Methanol Masers
We present resolution Very Large Array (VLA) observations of four
CHOH - 25~GHz transitions (=3, 5, 8, 10) along with 1.3~cm
continuum toward 20 regions of active massive star formation containing
Extended Green Objects (EGOs), 14 of which we have previously studied with the
VLA in the Class~I 44~GHz and Class~II 6.7~GHz maser lines (Cyganowski et al.
2009). Sixteen regions are detected in at least one 25~GHz line (=5), with
13 of 16 exhibiting maser emission. In total, we report 34 new sites of
CHOH maser emission and ten new sites of thermal CHOH emission,
significantly increasing the number of 25~GHz Class I CHOH masers observed
at high angular resolution. We identify probable or likely maser counterparts
at 44~GHz for all 15 of the 25~GHz masers for which we have complementary data,
providing further evidence that these masers trace similar physical conditions
despite uncorrelated flux densities. The sites of thermal and maser emission of
CHOH are both predominantly associated with the 4.5 m emission from
the EGO, and the presence of thermal CHOH emission is accompanied by 1.3~cm
continuum emission in 9 out of 10 cases. Of the 19 regions that exhibit 1.3~cm
continuum emission, it is associated with the EGO in 16 cases (out of a total
of 20 sites), 13 of which are new detections at 1.3~cm. Twelve of the 1.3~cm
continuum sources are associated with 6.7~GHz maser emission and likely trace
deeply-embedded massive protostars
- …