302 research outputs found
Brookfield powder flow tester - Results of round robin tests with CRM-116 limestone powder
A low cost powder flowability tester for industry has been developed at The Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich in collaboration with Brookfield Engineering and four food manufacturers: Cadbury, Kerry Ingredients, GSK and United Biscuits. Anticipated uses of the tester are primarily for quality control and new product development, but it can also be used for storage vessel design.
This paper presents the preliminary results from ‘round robin’ trials undertaken with the powder flow tester using the BCR limestone (CRM-116) standard test material. The mean flow properties have been compared to published data found in the literature for the other shear testers
Gemini Observations of Disks and Jets in Young Stellar Objects and in Active Galaxies
We present first results from the Near-infrared Integral Field Spectrograph
(NIFS) located at Gemini North. For the active galaxies Cygnus A and Perseus A
we observe rotationally-supported accretion disks and adduce the existence of
massive central black holes and estimate their masses. In Cygnus A we also see
remarkable high-excitation ionization cones dominated by photoionization from
the central engine. In the T-Tauri stars HV Tau C and DG Tau we see
highly-collimated bipolar outflows in the [Fe II] 1.644 micron line, surrounded
by a slower molecular bipolar outflow seen in the H_2 lines, in accordance with
the model advocated by Pyo et al. (2002).Comment: Invited paper presented at the 5th Stromlo Symposium. 9 pages, 7
figures. Accepted for publication in Astrophysics & Space Scienc
Analysis of Mesoscopic Structured 2-Propanol/Water Mixtures Using Pressure Perturbation Calorimetry and Molecular Dynamic Simulation
In this paper we demonstrate the application of pressure perturbation calorimetry (PPC) to the characterization of 2-propanol/water mixtures. PPC of different 2-propanol/water mixtures provides two useful measurements: (i) the change in heat (ΔQ); and (ii) the [δC¯p/δp]T[δC¯p/δp]T value. The results demonstrate that the ΔQ values of the mixtures deviate from that expected for a random mixture, with a maximum at ~20–25 mol% 2-propanol. This coincides with the concentration at which molecular dynamics (MD) simulations show a maximum deviation from random distribution, and also the point at which alcohol–alcohol hydrogen bonds become dominant over alcohol–water hydrogen bonds. Furthermore, the [δC¯p/δp]T[δC¯p/δp]T value showed transitions at 2.5 mol% 2-propanol and at approximately 14 mol% 2-propanol. Below 2.5 mol% 2-propanol the values of [δC¯p/δp]T[δC¯p/δp]T are negative; this is indicative of the presence of isolated 2-propanol molecules surrounded by water molecules. Above 2.5 mol% 2-propanol [δC¯p/δp]T[δC¯p/δp]T rises, reaching a maximum at ~14 mol% corresponding to a point where mixed alcohol–water networks are thought to dominate. The values and trends identified by PPC show excellent agreement not only with those obtained from MD simulations but also with results in the literature derived using viscometry, THz spectroscopy, NMR and neutron diffraction
PROFIT: a new alternative for emission-line PROfile FITting
I briefly describe a simple routine for emission-line profiles fitting by
Gaussian curves or Gauss-Hermite series. The PROFIT (line-PROfile FITting)
routine represent a new alternative for use in fits data cubes, as those from
Integral Field Spectroscopy or Fabry-Perot Interferometry, and may be useful to
better study the emission-line flux distributions and gas kinematics in
distinct astrophysical objects, such as the central regions of galaxies and
star forming regions. The PROFIT routine is written in IDL language and is
available at http://www.ufsm.br/rogemar/software.html.
The PROFIT routine was used to fit the [Fe II]1.257um emission-line profiles
for about 1800 spectra of the inner 350 pc of the Seyfert galaxy Mrk1066
obtained with Gemini NIFS and shows that the line profiles are better
reproduced by Gauss-Hermite series than by the commonly used Gaussian curves.
The two-dimensional map of the h_3 Gauss-Hermite moment shows its highest
absolute values in regions close to the edge of the radio structure. These high
values may be originated in an biconical outflowing gas associated with the
radio jet - previously observed in the optical [O III] emission. The analysis
of this kinematic component indicates that the radio jet leaves the center of
the galaxy with the north-west side slightly oriented towards us and the
south-east side away from us, being partially hidden by the disc of the galaxy.Comment: Accepted for publication Astrophysics & Space Science - 7 pges; 4
Fig
Molecular accretion in the core of the galaxy cluster 2A 0335+096
We present adaptive optics-assisted K-band integral field spectroscopy of the central cluster galaxy in 2A 0335+096 (z= 0.0349). The H2 v=1–0 S(1) emission is concentrated in two peaks within 600 pc of the nucleus and fainter but kinematically active emission extends towards the nucleus. The H2 is in a rotating structure which aligns with, and appears to have been accreted from, a stream of Hα emission extending over 14 kpc towards a companion galaxy. The projected rotation axis aligns with the 5 GHz radio lobes. This H2 traces the known 1.2 × 109 M⊙ CO-emitting reservoir; limits on the Brγ emission confirm that the H2 emission is not excited by star formation, which occurs at a rate of less than 1 M⊙ yr−1 in this gas. If its accretion on to the black hole can be regulated whilst star formation remains suppressed, the reservoir could last for at least 1 Gyr; the simultaneous accretion of just ∼5 per cent of the gas could drive a series of active galactic nucleus (AGN) outbursts which offset X-ray cooling in the cluster core for the full ∼1 Gyr. Alternatively, if the regulation is ineffective and the bulk of the H2 accretes within a few orbital periods (25–100 Myr), the resulting 1062 erg outburst would be among the most powerful cluster AGN outbursts known. In either case, these observations further support cold feedback scenarios for AGN heating
Origins of the Ambient Solar Wind: Implications for Space Weather
The Sun's outer atmosphere is heated to temperatures of millions of degrees,
and solar plasma flows out into interplanetary space at supersonic speeds. This
paper reviews our current understanding of these interrelated problems: coronal
heating and the acceleration of the ambient solar wind. We also discuss where
the community stands in its ability to forecast how variations in the solar
wind (i.e., fast and slow wind streams) impact the Earth. Although the last few
decades have seen significant progress in observations and modeling, we still
do not have a complete understanding of the relevant physical processes, nor do
we have a quantitatively precise census of which coronal structures contribute
to specific types of solar wind. Fast streams are known to be connected to the
central regions of large coronal holes. Slow streams, however, appear to come
from a wide range of sources, including streamers, pseudostreamers, coronal
loops, active regions, and coronal hole boundaries. Complicating our
understanding even more is the fact that processes such as turbulence,
stream-stream interactions, and Coulomb collisions can make it difficult to
unambiguously map a parcel measured at 1 AU back down to its coronal source. We
also review recent progress -- in theoretical modeling, observational data
analysis, and forecasting techniques that sit at the interface between data and
theory -- that gives us hope that the above problems are indeed solvable.Comment: Accepted for publication in Space Science Reviews. Special issue
connected with a 2016 ISSI workshop on "The Scientific Foundations of Space
Weather." 44 pages, 9 figure
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
Absolute luminosity measurements with the LHCb detector at the LHC
Absolute luminosity measurements are of general interest for colliding-beam
experiments at storage rings. These measurements are necessary to determine the
absolute cross-sections of reaction processes and are valuable to quantify the
performance of the accelerator. Using data taken in 2010, LHCb has applied two
methods to determine the absolute scale of its luminosity measurements for
proton-proton collisions at the LHC with a centre-of-mass energy of 7 TeV. In
addition to the classic "van der Meer scan" method a novel technique has been
developed which makes use of direct imaging of the individual beams using
beam-gas and beam-beam interactions. This beam imaging method is made possible
by the high resolution of the LHCb vertex detector and the close proximity of
the detector to the beams, and allows beam parameters such as positions, angles
and widths to be determined. The results of the two methods have comparable
precision and are in good agreement. Combining the two methods, an overall
precision of 3.5% in the absolute luminosity determination is reached. The
techniques used to transport the absolute luminosity calibration to the full
2010 data-taking period are presented.Comment: 48 pages, 19 figures. Results unchanged, improved clarity of Table 6,
9 and 10 and corresponding explanation in the tex
History of clinical transplantation
How transplantation came to be a clinical discipline can be pieced together by perusing two volumes of reminiscences collected by Paul I. Terasaki in 1991-1992 from many of the persons who were directly involved. One volume was devoted to the discovery of the major histocompatibility complex (MHC), with particular reference to the human leukocyte antigens (HLAs) that are widely used today for tissue matching.1 The other focused on milestones in the development of clinical transplantation.2 All the contributions described in both volumes can be traced back in one way or other to the demonstration in the mid-1940s by Peter Brian Medawar that the rejection of allografts is an immunological phenomenon.3,4 © 2008 Springer New York
- …
