3 research outputs found

    Flow distributed oscillation, flow velocity modulation and resonance

    Full text link
    We examine the effects of a periodically varying flow velocity on the standing and travelling wave patterns formed by the flow-distributed oscillation (FDO) mechanism. In the kinematic (or diffusionless) limit, the phase fronts undergo a simple, spatiotemporally periodic longitudinal displacement. On the other hand, when the diffusion is significant, periodic modulation of the velocity can disrupt the wave pattern, giving rise in the downstream region to travelling waves whose frequency is a rational multiple of the velocity perturbation frequency. We observe frequency locking at ratios of 1:1, 2:1 and 3:1, depending on the amplitude and frequency of the velocity modulation. This phenomenon can be viewed as a novel, rather subtle type of resonant forcing.Comment: submitted to Phys. Rev.

    New approaches to model and study social networks

    Full text link
    We describe and develop three recent novelties in network research which are particularly useful for studying social systems. The first one concerns the discovery of some basic dynamical laws that enable the emergence of the fundamental features observed in social networks, namely the nontrivial clustering properties, the existence of positive degree correlations and the subdivision into communities. To reproduce all these features we describe a simple model of mobile colliding agents, whose collisions define the connections between the agents which are the nodes in the underlying network, and develop some analytical considerations. The second point addresses the particular feature of clustering and its relationship with global network measures, namely with the distribution of the size of cycles in the network. Since in social bipartite networks it is not possible to measure the clustering from standard procedures, we propose an alternative clustering coefficient that can be used to extract an improved normalized cycle distribution in any network. Finally, the third point addresses dynamical processes occurring on networks, namely when studying the propagation of information in them. In particular, we focus on the particular features of gossip propagation which impose some restrictions in the propagation rules. To this end we introduce a quantity, the spread factor, which measures the average maximal fraction of nearest neighbors which get in contact with the gossip, and find the striking result that there is an optimal non-trivial number of friends for which the spread factor is minimized, decreasing the danger of being gossiped.Comment: 16 Pages, 9 figure

    Topology and Computational Performance of Attractor Neural Networks

    Full text link
    To explore the relation between network structure and function, we studied the computational performance of Hopfield-type attractor neural nets with regular lattice, random, small-world and scale-free topologies. The random net is the most efficient for storage and retrieval of patterns by the entire network. However, in the scale-free case retrieval errors are not distributed uniformly: the portion of a pattern encoded by the subset of highly connected nodes is more robust and efficiently recognized than the rest of the pattern. The scale-free network thus achieves a very strong partial recognition. Implications for brain function and social dynamics are suggestive.Comment: 2 figures included. Submitted to Phys. Rev. Letter
    corecore