659 research outputs found

    Examination of offsite radiological emergency protective measures for nuclear reactor accidents involving core melt

    Get PDF
    "Date published: June 1978. --Reissued: October 1979."MITNE series handwritten on title-page"SAND78-0454."Originally issued as a Ph. D. thesis by the first author and supervised by the second and third author, MIT, Dept. of Nuclear Engineering, 1978Originally issued as anIncludes bibliographical referencesEvacuation, sheltering followed by population relocation, and iodine prophylaxis are evaluated as offsite public protective measures in response to nuclear reactor accidents involving core-melt. Evaluations were conducted using a modified version of the Reactor Safety Study consequence model. Models representing each measure were developed and are discussed. Potential PWR core-melt radioactive material releases are separated into two categories, "Melt-through" and "Atmospheric," based upon the mode of containment failure. Protective measures are examined and compared for each category in terms of projected doses to the whole body and thyroid. Measures for "Atmospheric" accidents are also examined in terms of their influence on the occurrence of public health effects. For "Melt-through" accidents, few, if any, early public health effects are likely, and doses in excess of Protective Action Guides (PAGs) are "confined" to areas within 10 miles of the reactor.Evacuation appears to provide the largest reduction in whole body dose for this category. However, sheltering, particularly when basements are readily available, may be an acceptable alternative. Both evacuation and iodine prophylaxis can substantially reduce the dose to the thyroid. For "Atmospheric" accidents, PAGs are likely to be exceeded at very large distances, and significant numbers of early public health effects are possible. However, most early fatalities occur within 10 miles of the reactor. Within 5 miles, evacuation appears to be more effective than sheltering in reducing the number of early health effects. Beyond 5 miles, this distinction is less, or not, apparent. Within 10 miles, early health effects are strongly influenced by the speed and efficiency with which protective measures are implemented. Outside of 10 miles, they are not.The projected total number of thyroid nodules is not substantially reduced unless iodine prophylaxis is administered over very large areas (distances). The qualitative effects of weather conditions on the above conclusions are also briefly discussed.Prepared for Office of Nuclear Regulatory Research, Probabilistic Staff, U.S. Nuclear Regulatory Commission, under Interagency Agreement DOE-40-550-75 NRC FIN no. A103

    Developing Optimized Trajectories Derived from Mission and Thermo-Structural Constraints

    Get PDF
    In conjunction with NASA and the Department of Defense, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) has been investigating analytical techniques to address many of the fundamental issues associated with solar exploration spacecraft and high-speed atmospheric vehicle systems. These issues include: thermo-structural response including the effects of thermal management via the use of surface optical properties for high-temperature composite structures; aerodynamics with the effects of non-equilibrium chemistry and gas radiation; and aero-thermodynamics with the effects of material ablation for a wide range of thermal protection system (TPS) materials. The need exists to integrate these discrete tools into a common framework that enables the investigation of interdisciplinary interactions (including analysis tool, applied load, and environment uncertainties) to provide high fidelity solutions. In addition to developing robust tools for the coupling of aerodynamically induced thermal and mechanical loads, JHU/APL has been studying the optimal design of high-speed vehicles as a function of their trajectory. Under traditional design methodology the optimization of system level mission parameters such as range and time of flight is performed independently of the optimization for thermal and mechanical constraints such as stress and temperature. A truly optimal trajectory should optimize over the entire range of mission and thermo-mechanical constraints. Under this research, a framework for the robust analysis of high-speed spacecraft and atmospheric vehicle systems has been developed. It has been built around a generic, loosely coupled framework such that a variety of readily available analysis tools can be used. The methodology immediately addresses many of the current analysis inadequacies and allows for future extension in order to handle more complex problems

    Experimental Analyses of Step Extent and Contact Buffer in Pedestrian Dynamics

    Get PDF
    This study aims to quantify and develop a deeper understanding of the parameters that underpin the development of a new, predictive, microscopic model of pedestrian movement with the potential to accurately reflect the complexity of flow dynamics now and into the future. It presents the results and analyses of two single file experiments designed to quantify the physical space taken up by the extent of a person's stepping movement (maximum step extent) and the minimum distance between points of inter-person contact (contact buffer) across a range of walking speeds. The experiments successfully used high-resolution optical motion capture and enhanced video analysis to quantify the dynamic changes in gait and spatial parameters, which were manifested as overlapping steps, and changes to step extent, step length, step frequency, and contact distance. The sum of the step extent and contact buffer, at different speeds, was found to be within a few centimetres of the inter-person distance (headway), leading to the conclusion that these parameters are therefore key components for the derivation of inter-person spacing and, hence, overall crowd movement. The work informs the longer term aim of developing the mathematical model which has the potential to include pedestrian demographics, walking ability and cognitive capabilities

    What Does Character Education Mean to Character Education Experts? A Prototype Analysis of Expert Opinions

    Get PDF
    Having an agreed-upon definition of character education would be useful for both researchers and practitioners in the field. However, even experts in character education disagree on how they would define it. We attempted to achieve greater conceptual clarity on this issue through a prototype analysis in which the features perceived as most central to character education were identified. In Study 1 (N = 77), we asked character education experts to enumerate features of character education. Based on these lists, we identified 30 features. In Study 2 (N = 101), experts assessed which features were central to character education through a categorization task. In Study 3 (N = 166), we assessed the extent of centrality using scalar items. We conclude by offering practical advice for the development of future character education studies and programs rooted in what is deemed central to such programs

    Snowpack Relative Permittivity and Density Derived from Near-Coincident Lidar and Ground-Penetrating Radar

    Get PDF
    Depth-based and radar-based remote sensing methods (e.g., lidar, synthetic aperture radar) are promising approaches for remotely measuring snow water equivalent (SWE) at high spatial resolution. These approaches require snow density estimates, obtained from in-situ measurements or density models, to calculate SWE. However, in-situ measurements are operationally limited, and few density models have seen extensive evaluation. Here, we combine near-coincident, lidar-measured snow depths with ground-penetrating radar (GPR) two-way travel times (twt) of snowpack thickness to derive \u3e20 km of relative permittivity estimates from nine dry and two wet snow surveys at Grand Mesa, Cameron Pass, and Ranch Creek, Colorado. We tested three equations for converting dry snow relative permittivity to snow density and found the Kovacs et al. (1995) equation to yield the best comparison with in-situ measurements (RMSE = 54 kg m−3). Variogram analyses revealed a 19 m median correlation length for relative permittivity and snow density in dry snow, which increased to \u3e 30 m in wet conditions. We compared derived densities with estimated densities from several empirical models, the Snow Data Assimilation System (SNODAS), and the physically based iSnobal model. Estimated and derived densities were combined with snow depths and twt to evaluate density model performance within SWE remote sensing methods. The Jonas et al. (2009) empirical model yielded the most accurate SWE from lidar snow depths (RMSE = 51 mm), whereas SNODAS yielded the most accurate SWE from GPR twt (RMSE = 41 mm). Densities from both models generated SWE estimates within ±10% of derived SWE when SWE averaged \u3e 400 mm, however, model uncertainty increased to \u3e 20% when SWE averaged \u3c 300 mm. The development and refinement of density models, particularly in lower SWE conditions, is a high priority to fully realize the potential of SWE remote sensing methods

    Developing a medical device-grade T2 phantom optimized for myocardial T2 mapping by cardiovascular magnetic resonance

    Get PDF
    INTRODUCTION: A long T2 relaxation time can reflect oedema, and myocardial inflammation when combined with increased plasma troponin levels. Cardiovascular magnetic resonance (CMR) T2 mapping therefore has potential to provide a key diagnostic and prognostic biomarkers. However, T2 varies by scanner, software, and sequence, highlighting the need for standardization and for a quality assurance system for T2 mapping in CMR. AIM: To fabricate and assess a phantom dedicated to the quality assurance of T2 mapping in CMR. METHOD: A T2 mapping phantom was manufactured to contain 9 T1 and T2 (T1|T2) tubes to mimic clinically relevant native and post-contrast T2 in myocardium across the health to inflammation spectrum (i.e., 43-74 ms) and across both field strengths (1.5 and 3 T). We evaluated the phantom's structural integrity, B0 and B1 uniformity using field maps, and temperature dependence. Baseline reference T1|T2 were measured using inversion recovery gradient echo and single-echo spin echo (SE) sequences respectively, both with long repetition times (10 s). Long-term reproducibility of T1|T2 was determined by repeated T1|T2 mapping of the phantom at baseline and at 12 months. RESULTS: The phantom embodies 9 internal agarose-containing T1|T2 tubes doped with nickel di-chloride (NiCl2) as the paramagnetic relaxation modifier to cover the clinically relevant spectrum of myocardial T2. The tubes are surrounded by an agarose-gel matrix which is doped with NiCl2 and packed with high-density polyethylene (HDPE) beads. All tubes at both field strengths, showed measurement errors up to ≤ 7.2 ms [< 14.7%] for estimated T2 by balanced steady-state free precession T2 mapping compared to reference SE T2 with the exception of the post-contrast tube of ultra-low T1 where the deviance was up to 16 ms [40.0%]. At 12 months, the phantom remained free of air bubbles, susceptibility, and off-resonance artifacts. The inclusion of HDPE beads effectively flattened the B0 and B1 magnetic fields in the imaged slice. Independent temperature dependency experiments over the 13-38 °C range confirmed the greater stability of shorter vs longer T1|T2 tubes. Excellent long-term (12-month) reproducibility of measured T1|T2 was demonstrated across both field strengths (all coefficients of variation < 1.38%). CONCLUSION: The T2 mapping phantom demonstrates excellent structural integrity, B0 and B1 uniformity, and reproducibility of its internal tube T1|T2 out to 1 year. This device may now be mass-produced to support the quality assurance of T2 mapping in CMR

    The IUPHAR/BPS Guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands

    Get PDF
    The IUPHAR/BPS Guide to PHARMACOLOGY (GtoPdb, http://www.guidetopharmacology.org) provides expert-curated molecular interactions between successful and potential drugs and their targets in the human genome. Developed by the International Union of Basic and Clinical Pharmacology (IUPHAR) and the British Pharmacological Society (BPS), this resource, and its earlier incarnation as IUPHAR-DB, is described in our 2014 publication. This update incorporates changes over the intervening seven database releases. The unique model of content capture is based on established and new target class subcommittees collaborating with in-house curators. Most information comes from journal articles, but we now also index kinase cross-screening panels. Targets are specified by UniProtKB IDs. Small molecules are defined by PubChem Compound Identifiers (CIDs); ligand capture also includes peptides and clinical antibodies. We have extended the capture of ligands and targets linked via published quantitative binding data (e.g. Ki, IC50 or Kd). The resulting pharmacological relationship network now defines a data-supported druggable genome encompassing 7% of human proteins. The database also provides an expanded substrate for the biennially published compendium, the Concise Guide to PHARMACOLOGY. This article covers content increase, entity analysis, revised curation strategies, new website features and expanded download options
    corecore