1,650 research outputs found

    Methane Fluxes from a High Intensity Seep Area west of Crimea, Black Sea

    Get PDF
    Methane seepage is a wide-spread phenomenon in the Black Sea with an increase in density and intensity west of the Crimea in the Paleo Dnepr area between 70 and 250m water depth. Within the EU funded project CRIMEA we studied the impact of high intensity seeps on the methane distribution in the water column and its possible transport into the atmosphere. Here we present data which allow flux calculations of free methane from an area of 1 by 1.23 miles between 80 and 95m water depth. Our calculations are based on direct and hydroacoustic flux measurements of single seeps or small-scaled seep areas (several m2); the spatial extrapolation of these fluxes use the very strong correlation between the bubble seep occurrence and a high backscattering seafloor; the temporal variability of bubble release was detected via the lander-based hydroacoustic system GasQuant.More than 1000 bubbling seep sites were identified during two cruises in 2003 and 2004 by hydroacoustic water column surveys. The hydroacoustic detection of bubbles uses the strong backscattering of the free gas phase caused by the great impedance difference of bubbles in water (equivalent to the detection of fish and their swim bladder). In echograms, bubble streams or even single bubbles can be detected, traced and used for special analyses such as bubble rising speed, bubble size and shrinking rates. Because of the flare-like appearance of bubble streams in echograms we call these features ’flares’.Parallel multi beam mapping allowed the detection of the seafloor morphology together with the spatial backscatter intensity of the seafloor. The combination of flare occurrences with high backscatter areas provided a very good correlation. Normalized, the backscatter ranged from -12.5 to 7.1 dB for an area of 4.23 km2. All seep positions plott in areas with more than -2.7 dB, which is almost the entire area of investigation (95.8 %). However, 75% of the flares occur within only 20.1% of the area, half of the flares occur in only 9.2% and 25% even occur in only 3.8% of the area with backscattering values above 2.4 dB. This correlation allows to predict and extrapolate active bubble seeps even without direct or hydroacoustic observations.One reason for the high backscattering seafloor are patches of carbonate cemented seafloor (formed via AOM) which typically occurs just below bright white Beggiatoa mats. In addition, high resolution seismic studies with a 5kHz sub-bottom profiler clearly show a shallow gas front in normally 3m sediment depth. In those areas where strong gas front reflectors dome up and reach the seafloor surface the backscatter values and flare density are the highest. This clearly shows that the bubbles released are fed from shallow gas which also might have an impact on the physical properties of the seafloor and its backscatter behaviour. Seeps in lower or even very low backscatter areas possibly indicate a rather young or weak activity which did not (so far) cause a remarkable carbonate cementation detectable during multi beam surveys.However, the backscatter data are the base for our spatial flux calculations which use direct bubble trapping to distinguish the flux rate from one single seep hole and hydroacoustic methods for small seep areas of several m2. Direct bubble flux measurements were performed with the submersible JAGO by trapping the bubbles with a funnel. Fluxes vary between 0.55 and 1.44 ml/s (or 1.98 to 5.18 l/h at in situ volume; or 0.24 to 0.64 mmol/s). Subsequent GC-based gas analyses onboard confirmed that the gas phase consists exclusively of methane. Visual observations by JAGO and towed camera systems showed bubble diameters between 1 and 15mm with typical sizes between 3 and 7mm. Together with bubble rising speeds of typically 25cm/s both attributes are in very good agreement with detailed hydroacoustic measurements using a dual frequency scientific echo sounder EK500 (120 and 38kHz). Flux estimat

    Proliferated LEO Architecture Enabling Beyond Line of Sight Fires (pLEO BLOS Fires)

    Get PDF
    NPS NRP Project PosterChief of Naval Operations, ADM Gilday, and Commandant of the Marine Corps, Gen Berger, directed modernization efforts across the Naval Services. The concept of Naval Operational Architecture (NOA) enables the development of additional beyond-line-of-sight (BLOS) targeting and fires delivered from widely distributed points within and outside a near-peer's weapons engagement zones (WEZ). Research into proliferated low-earth orbiting communications satellites (pLEO) reveal an intersection with the Joint All Domain Command and Control (JADC2) priority and the Navy and Marine components leveraging efforts such as Task Force Overmatch (DEVSECOPS). There is an immediate need to develop requirements and analyze alternate architectures for delivering BLOS precision fires in future contested environments in the context of Great Power Competition. Faculty experience with space mission architecture design will be leveraged to advise students in achieving the following objectives: 1) Research and develop operational, functional objective and threshold requirements for a proliferated LEO systems within the JADC2 framework to enable BLOS precision fires. 2) Analyze alternative architectures for the requirements which enable BLOS precision fires in a contested environment. A phased approach will be used to meet the research objectives. First, a capabilities or system requirements-like document will be generated to include validation criteria and in-phase lessons learned. Second, standard aerospace modeling/simulation techniques will be used to define the mission and architecture requirements and analyze the alternatives for architectures enabling BLOS precision fires through a contested environment to include in-phase lessons learned. Third, individual student thesis research will occur to completion/graduation of the students and any final closing actions through the remainder of the project period.Marine Corps Capabilities Development Directorate (CDD), DC CD&IHQMC Combat Development and Integration (CD&I)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Proliferated LEO Architecture Enabling Beyond Line of Sight Fires (pLEO BLOS Fires)

    Get PDF
    NPS NRP Executive SummaryChief of Naval Operations, ADM Gilday, and Commandant of the Marine Corps, Gen Berger, directed modernization efforts across the Naval Services. The concept of Naval Operational Architecture (NOA) enables the development of additional beyond-line-of-sight (BLOS) targeting and fires delivered from widely distributed points within and outside a near-peer's weapons engagement zones (WEZ). Research into proliferated low-earth orbiting communications satellites (pLEO) reveal an intersection with the Joint All Domain Command and Control (JADC2) priority and the Navy and Marine components leveraging efforts such as Task Force Overmatch (DEVSECOPS). There is an immediate need to develop requirements and analyze alternate architectures for delivering BLOS precision fires in future contested environments in the context of Great Power Competition. Faculty experience with space mission architecture design will be leveraged to advise students in achieving the following objectives: 1) Research and develop operational, functional objective and threshold requirements for a proliferated LEO systems within the JADC2 framework to enable BLOS precision fires. 2) Analyze alternative architectures for the requirements which enable BLOS precision fires in a contested environment. A phased approach will be used to meet the research objectives. First, a capabilities or system requirements-like document will be generated to include validation criteria and in-phase lessons learned. Second, standard aerospace modeling/simulation techniques will be used to define the mission and architecture requirements and analyze the alternatives for architectures enabling BLOS precision fires through a contested environment to include in-phase lessons learned. Third, individual student thesis research will occur to completion/graduation of the students and any final closing actions through the remainder of the project period.Marine Corps Capabilities Development Directorate (CDD), DC CD&IHQMC Combat Development and Integration (CD&I)This research is supported by funding from the Naval Postgraduate School, Naval Research Program (PE 0605853N/2098). https://nps.edu/nrpChief of Naval Operations (CNO)Approved for public release. Distribution is unlimited.

    Preliminary Experiments and Modelling of the Fate of CO2 Bubbles in the Water Column Near Panarea Island (Italy)

    Get PDF
    Although CO2 capture and storage in deep, offshore reservoirs is a proven technology, as illustrated by over 15 years of operation of the Sleipner site in the Norwegian North Sea, potential leakage from such sites into the overlying water column remains a concern for some stakeholders. Therefore, we are obliged to carefully assess our ability to predict and monitor the migration, fate, and potential ecosystem impact of any leaked CO2. The release of bubbles from the sea floor, their upward movement, and their dissolution into the surrounding water controls the initial boundary conditions, and thus an understanding of the behavior of CO2 bubbles is critical to address such issues related to monitoring and risk assessment. The present study describes results from an in situ experiment conducted in 12 m deep marine water near the extinct volcanic island of Panarea (Italy). Bubbles of a controlled size were created using natural CO2 released from the sea floor, and their evolution during ascent in the water column was monitored via both video and chemical measurements. The obtained results were modelled and a good fit was obtained, showing the potential of the model as a predictive tool. These preliminary results and an assessment of the difficulties encountered are examined and will be used to improve experimental design for the subsequent phase of this research

    Effect of microstructures on the electron-phonon interaction in the disordered metals Pd60_{60}Ag40_{40}

    Full text link
    Using the weak-localization method, we have measured the electron-phonon scattering times τep\tau_{ep} in Pd60_{60}Ag40_{40} thick films prepared by DC- and RF-sputtering deposition techniques. In both series of samples, we find an anomalous 1/τepT21/\tau_{ep} \propto T^2\ell temperature and disorder dependence, where \ell is the electron elastic mean free path. This anomalous behavior cannot be explained in terms of the current concepts for the electron-phonon interaction in impure conductors. Our result also reveals that the strength of the electron-phonon coupling is much stronger in the DC than RF sputtered films, suggesting that the electron-phonon interaction not only is sensitive to the total level of disorder but also is sensitive to the microscopic quality of the disorder.Comment: accepted for publication in Phys. Rev.

    Climate change projections of the North American Regional Climate Change Assessment Program (NARCCAP)

    Get PDF
    We investigate major results of the NARCCAP multiple regional climate model (RCM) experiments driven by multiple global climate models (GCMs) regarding climate change for seasonal temperature and precipitation over North America. We focus on two major questions: How do the RCM simulated climate changes differ from those of the parent GCMs and thus affect our perception of climate change over North America, and how important are the relative contributions of RCMs and GCMs to the uncertainty (variance explained) for different seasons and variables? The RCMs tend to produce stronger climate changes for precipitation: larger increases in the northern part of the domain in winter and greater decreases across a swath of the central part in summer, compared to the four GCMs driving the regional models as well as to the full set of CMIP3 GCM results. We pose some possible process-level mechanisms for the difference in intensity of change, particularly for summer. Detailed process-level studies will be necessary to establish mechanisms and credibility of these results. The GCMs explain more variance for winter temperature and the RCMs for summer temperature. The same is true for precipitation patterns. Thus, we recommend that future RCM-GCM experiments over this region include a balanced number of GCMs and RCMs

    The Mechanisms of RNA SHAPE Chemistry

    Get PDF
    The biological functions of RNA are ultimately governed by the local environment at each nucleotide. Selective 2′-hydroxyl acylation analyzed by primer extension (SHAPE) chemistry is a powerful approach for measuring nucleotide structure and dynamics in diverse biological environments. SHAPE reagents acylate the 2′-hydroxyl group at flexible nucleotides because unconstrained nucleotides preferentially sample rare conformations that enhance the nucleophilicity of the 2′-hydroxyl. The critical corollary is that some constrained nucleotides must be poised for efficient reaction at the 2′-hydroxyl group. To identify such nucleotides, we performed SHAPE on intact crystals of the E. coli ribosome, monitored the reactivity of 1490 nucleotides in 16S ribosomal RNA, and examined those nucleotides that were hyper-reactive towards SHAPE and had well-defined crystallographic conformations. Analysis of these conformations revealed that 2′-hydroxyl reactivity is broadly facilitated by general base catalysis involving multiple RNA functional groups and by two specific orientations of the bridging 3′-phosphate group. Nucleotide analog studies confirmed the contributions of these mechanisms to SHAPE reactivity. These results provide a strong mechanistic explanation for the relationship between SHAPE reactivity and local RNA dynamics and will facilitate interpretation of SHAPE information in the many technologies that make use of this chemistry
    corecore