43 research outputs found
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
Maternal prenatal anxiety and the fetal origins of epigenetic aging
Stress and Psychopatholog
Communication is key: a study of the development of communication key skills in China
Different countries offer alternative curricula around what might be designated language, literacy and/or communication. This paper focuses on the latter which has typically been associated with vocational education and often labelled a âkeyâ or âcoreâ skill that forms part of a wider set of life and employability skills. In recent years, as China has emerged as a global economy, education has been significant in its policy and development. This research explores staff and student responses to the introduction of a key skills communication course in three Chinese further education vocational colleges. The initiative was prompted by research in China which had suggested that communication is important not just for education (Ye and Li 2007) but also for employability, and that the ability to communicate effectively could be instrumental in individualsâ success and development (Tong and Zhong 2008). It explores what communication key skills might mean in a Chinese context and questions notions of transferability and of competence and performance in communication. It analyses how motivation could affect learner success and the relationship of pedagogy to curriculum and, finally, it considers how communication might be an element in the longer-term social and political development of critical literacies
TRY plant trait database â enhanced coverage and open access
Plant traitsâthe morphological, anatomical, physiological, biochemical and phenological characteristics of plantsâdetermine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of traitâbased plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traitsâalmost complete coverage for âplant growth formâ. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and traitâenvironmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives
The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells
Contains fulltext :
219496.pdf (Publisherâs version ) (Closed access)DNA methylation is the most studied modification in human population epigenetics. Its information content can be explored in 2 principal ways - epigenome-wide association studies and epigenetic age. The latter likely reflects cellular/biological age and works with impressive accuracy across most tissues. In adults, it associates with various environments and health. However, current epigenetic clocks are not very accurate in the pediatric age range perhaps because DNA methylation changes much faster in children. Addressing this crucial gap, we created a precise tool to estimate DNA methylation age specific to pediatric buccal epithelial cells. This tool has the potential to become the standard reference for epigenetic studies broadly relevant to child development across the spectrum from health to disease.The development of biological markers of aging has primarily focused on adult samples. Epigenetic clocks are a promising tool for measuring biological age that show impressive accuracy across most tissues and age ranges. In adults, deviations from the DNA methylation (DNAm) age prediction are correlated with several age-related phenotypes, such as mortality and frailty. In children, however, fewer such associations have been made, possibly because DNAm changes are more dynamic in pediatric populations as compared to adults. To address this gap, we aimed to develop a highly accurate, noninvasive, biological measure of age specific to pediatric samples using buccal epithelial cell DNAm. We gathered 1,721 genome-wide DNAm profiles from 11 different cohorts of typically developing individuals aged 0 to 20 y old. Elastic net penalized regression was used to select 94 CpG sites from a training dataset (n = 1,032), with performance assessed in a separate test dataset (n = 689). DNAm at these 94 CpG sites was highly predictive of age in the test cohort (median absolute error = 0.35 y). The Pediatric-Buccal-Epigenetic (PedBE) clock was characterized in additional cohorts, showcasing the accuracy in longitudinal data, the performance in nonbuccal tissues and adult age ranges, and the association with obstetric outcomes. The PedBE tool for measuring biological age in children might help in understanding the environmental and contextual factors that shape the DNA methylome during child development, and how it, in turn, might relate to child health and disease.7 p
Attachment insecurity and the biological embedding of reproductive strategies: investigating the role of cellular aging
Evolutionary-developmental psychologists have posited that individuals who grow up in stressful rearing circumstances follow faster life history strategies, thereby increasing their chances of reproduction. This preregistered study tested this stress-acceleration hypothesis in a low-risk longitudinal sample of 193 Dutch mother-child dyads, by investigating whether infant-mother attachment insecurity at 12 months of age predicted earlier pubertal onset and more callous-unemotional traits, aggression and risk-taking about a decade later. Also evaluated were the possible mediating roles of two biomarkers of accelerated aging (i.e., telomere length, epigenetic aging) at age 6. Structural equation modelling revealed no effects of attachment insecurity on biomarkers, pubertal timing or behavior. These null findings suggest that the explanatory value of evolutionary-developmental thinking might be restricted to high-risk samples, though unexplored variation in susceptibility to environmental influences might also explain the null findings