47 research outputs found

    Individual winter movement strategies in two species of Murre (Uria spp.) in the Northwest Atlantic

    Get PDF
    Individual wintering strategies and patterns of winter site fidelity in successive years are highly variable among seabird species. Yet, an understanding of consistency in timing of movements and the degree of site fidelity is essential for assessing how seabird populations might be influenced by, and respond to, changing conditions on wintering grounds. To explore annual variation in migratory movements and wintering areas, we applied bird-borne geolocators on Thick-billed Murres (Uria lomvia, n = 19) and Common Murres (U. aalge, n = 20) from 5 colonies in the Northwest Atlantic for 2–4 consecutive years. Thick-billed Murres ranged widely and among-individual wintering strategies were highly variable, whereas most Common Murres wintered relatively near their colonies, with among-individual variation represented more by the relative use of inshore vs. offshore habitat. Within individuals, some aspects of the wintering strategy were more repeatable than others: colony arrival and departure dates were more consistent by individual Common than Thick-billed Murres, while the sizes of home ranges (95% utilization distributions) and distances travelled to wintering area were more repeatable for both species. In consecutive years, individual home ranges overlapped from 0–64% (Thick-billed Murres) and 0–95% (Common Murres); and the winter centroids were just 239 km and 169 km apart (respectively). Over the 3–4 year timescale of our study, individuals employed either fixed or flexible wintering strategies; although most birds showed high winter site fidelity, some shifted core ranges after 2 or 3 years. The capacity among seabird species for a combination of fidelity and flexibility, in which individuals may choose from a range of alternative strategies, deserves further, longer term attention

    Employing Predictive Spatial Models to Inform Conservation Planning for Seabirds in the Labrador Sea

    Get PDF
    Seabirds are vulnerable to incidental harm from human activities in the ocean, and knowledge of their seasonal distribution is required to assess risk and effectively inform marine conservation planning. Significant hydrocarbon discoveries and exploration licenses in the Labrador Sea underscore the need for quantitative information on seabird seasonal distribution and abundance, as this region is known to provide important habitat for seabirds year-round. We explore the utility of density surface modeling (DSM) to improve seabird information available for regional conservation and management decision making. We, (1) develop seasonal density surface models for seabirds in the Labrador Sea using data from vessel-based surveys (2006–2014; 13,783 linear km of surveys), (2) present measures of uncertainty in model predictions, (3) discuss how density surface models can inform conservation and management decision making, and 4) explore challenges and potential pitfalls associated with using these modeling procedures. Models predicted large areas of high seabird density in fall over continental shelf waters (max. ~80 birds·km−2) driven largely by the southward migration of murres (Uria spp.) and dovekies (Alle alle) from Arctic breeding colonies. The continental shelf break was also highlighted as an important habitat feature, with predictions of high seabird densities particularly during summer (max. ~70 birds·km−2). Notable concentrations of seabirds overlapped with several significant hydrocarbon discoveries on the continental shelf and large areas in the vicinity of the southern shelf break, which are in the early stages of exploration. Some, but not all, areas of high seabird density were within current Ecologically and Biologically Significant Area (EBSA) boundaries. Building predictive spatial models required knowledge of Distance Sampling and GAMs, and significant investments of time and computational power—resource needs that are becoming more common in ecological modeling. Visualization of predictions and their uncertainty needed to be considered for appropriate interpretation by end users. Model uncertainty tended to be greater where survey effort was limited or where predictor covariates exceeded the range of those observed. Predictive spatial models proved useful in generating defensible estimates of seabird densities in many areas of interest to the oil and gas industry in the Labrador Sea, and will have continued use in marine risk assessments and spatial planning activities in the region and beyond

    Miniaturized data loggers and computer programming improve seabird risk and damage assessments for marine oil spills in Atlantic Canada

    Get PDF
    Obtaining useful information on marine birds that can aid in oil spill (and other hydrocarbon release) risk and damage assessments in offshore environments is challenging. Technological innovations in miniaturization have allowed archival data loggers to be deployed successfully on marine birds vulnerable to hydrocarbons on water. A number of species, including murres (both Common, Uria aalge, and Thick-billed, U. lomvia) have been tracked using geolocation devices in eastern Canada, increasing our knowledge of the seasonality and colony-specific nature of their susceptibility to oil on water in offshore hydrocarbon production areas and major shipping lanes. Archival data tags are starting to resolve questions around behaviour of vulnerable seabirds at small spatial scales relevant to oil spill impact modelling, specifically to determine the duration and frequency at which birds fly at sea. Advances in data capture methods using voice activated software have eased the burden on seabird observers who are collecting increasingly more detailed information on seabirds during ship-board and aerial transects. Computer programs that integrate seabird density and bird behaviour have been constructed, all with a goal of creating more credible seabird oil spill risk and damage assessments. In this paper, we discuss how each of these technological and computing innovations can help define critical inputs into seabird risk and damage assessments, and when combined, can provide a more realistic understanding of the impacts to seabirds from any hydrocarbon release

    Female and male Leach\u27s Storm Petrels (Hydrobates leucorhous) pursue different foraging strategies during the incubation period

    Get PDF
    Reproduction in procellariiform birds is characterized by a single egg clutch, slow development, a long breeding season and obligate biparental care. Female Leach\u27s Storm Petrels Hydrobates leucorhous, nearly monomorphic members of this order, produce eggs that are between 20 and 25% of adult bodyweight. We tested whether female foraging behaviour differs from male foraging behaviour during the ~ 44-day incubation period across seven breeding colonies in the Northwest Atlantic. Over six breeding seasons, we used a combination of Global Positioning System and Global Location Sensor devices to measure characteristics of individual foraging trips during the incubation period. Females travelled significantly greater distances and went farther from the breeding colony than did males on individual foraging trips. For both sexes, the longer the foraging trip, the greater the distance. Independent of trip duration, females travelled farther, and spent a greater proportion of their foraging trips prospecting widely, as defined by behavioural categories derived from a hidden Markov Model. For both sexes, trip duration decreased with date. Sex differences in these foraging metrics were apparently not a consequence of morphological differences or spatial segregation. Our data are consistent with the idea that female foraging strategies differed from male foraging strategies during incubation in ways that would be expected if females were still compensating for egg formation

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world’s oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species

    Global assessment of marine plastic exposure risk for oceanic birds

    Get PDF
    Plastic pollution is distributed patchily around the world's oceans. Likewise, marine organisms that are vulnerable to plastic ingestion or entanglement have uneven distributions. Understanding where wildlife encounters plastic is crucial for targeting research and mitigation. Oceanic seabirds, particularly petrels, frequently ingest plastic, are highly threatened, and cover vast distances during foraging and migration. However, the spatial overlap between petrels and plastics is poorly understood. Here we combine marine plastic density estimates with individual movement data for 7137 birds of 77 petrel species to estimate relative exposure risk. We identify high exposure risk areas in the Mediterranean and Black seas, and the northeast Pacific, northwest Pacific, South Atlantic and southwest Indian oceans. Plastic exposure risk varies greatly among species and populations, and between breeding and non-breeding seasons. Exposure risk is disproportionately high for Threatened species. Outside the Mediterranean and Black seas, exposure risk is highest in the high seas and Exclusive Economic Zones (EEZs) of the USA, Japan, and the UK. Birds generally had higher plastic exposure risk outside the EEZ of the country where they breed. We identify conservation and research priorities, and highlight that international collaboration is key to addressing the impacts of marine plastic on wide-ranging species.B.L.C., C.H., and A.M. were funded by the Cambridge Conservation Initiative’s Collaborative Fund sponsored by the Prince Albert II of Monaco Foundation. E.J.P. was supported by the Natural Environment Research Council C-CLEAR doctoral training programme (Grant no. NE/S007164/1). We are grateful to all those who assisted with the collection and curation of tracking data. Further details are provided in the Supplementary Acknowledgements. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government.Peer reviewe

    Experimental evidence that both timing and parental quality affect breeding success in a zooplanktivorous seabird

    No full text
    Avian breeding success generally declines with later laying because of seasonal reductions in food supply, late laying by less capable pairs, or both. To understand the direct fitness consequences of breeding time requires distinguishing between these two possibilities. We used egg removal and re-laying experiments to evaluate how date and parental quality affect breeding success in a zooplanktivorous seabird, Cassin's Auklet (Ptychoramphus aleuticus). Egg laying began at the same time in all 5 years of study at Triangle Island, British Columbia, but, compared with a cold-water year, the population laid later and less synchronously in 4 warm-water years in which prey populations peaked earlier. As a result, Cassin's Auklets were less successful in years in which they laid later. Within seasons, early-laying females whose breeding attempt we delayed did not follow the population-wide seasonal declines in hatching success. This indicates a strong role for parental quality at the egg stage, probably because early, high-quality birds maintained more constant incubation. By contrast, the experimental females followed the population-wide seasonal declines in nestling survival and fledging mass. This indicates a strong role for date at the offspring-provisioning stage, which accords well with a previous study that found that success while raising nestlings is largely determined by the degree of temporal (mis)matching with the copepod Neocalanus cristatus. Our results offer novel insight into the causes of seasonal declines in avian breeding success, indicating that date and parental effects can be differentially involved, depending on the stage of breeding. Received 21 October 2008, accepted 16 May 2009
    corecore