5,234 research outputs found
Holographic predictions for cosmological 3-point functions
We present the holographic predictions for cosmological 3-point correlators,
involving both scalar and tensor modes, for a universe which started in a
non-geometric holographic phase. Holographic formulae relate the cosmological
3-point functions to stress tensor correlation functions of a holographically
dual three-dimensional non-gravitational QFT. We compute these correlators at
1-loop order for a theory containing massless scalars, fermions and gauge
fields, and present an extensive analysis of the constraints due to Ward
identities showing that they uniquely determine the correlators up to a few
constants. We define shapes for all cosmological bispectra and compare the
holographic shapes to the slow-roll ones, finding that some are distinguishable
while others, perhaps surprisingly, are not.Comment: 51pp; 4 fig
Holographic Non-Gaussianity
We investigate the non-Gaussianity of primordial cosmological perturbations
within our recently proposed holographic description of inflationary universes.
We derive a holographic formula that determines the bispectrum of cosmological
curvature perturbations in terms of correlation functions of a holographically
dual three-dimensional non-gravitational quantum field theory (QFT). This
allows us to compute the primordial bispectrum for a universe which started in
a non-geometric holographic phase, using perturbative QFT calculations.
Strikingly, for a class of models specified by a three-dimensional
super-renormalisable QFT, the primordial bispectrum is of exactly the
factorisable equilateral form with f_nl^eq=5/36, irrespective of the details of
the dual QFT. A by-product of this investigation is a holographic formula for
the three-point function of the trace of the stress-energy tensor along general
holographic RG flows, which should have applications outside the remit of this
work.Comment: 42 pages, 2 figs, published versio
Individually-rational collective choice
There is a collection of exogenously given socially-feasible sets, and, for each one of them, each individual in a group chooses from an individually-feasible set. The fact that the product of the individually-feasible sets is larger than the socially-feasible set notwithstanding, there arises no conflict between individual choices. Assuming that individual preferences are random, I characterize rationalizable collective choices
A Study of Longitudinal Control Problems at Low and Negative Damping and Stability with Emphasis on Effects of Motion Cues
As part of a general investigation to determine the effects of simulator motions on pilot opinion and task performance over a wide range of vehicle longitudinal dynamics, a cooperative NASA-AMAL program was conducted on the centrifuge at Johnsville, Pennsylvania. The test parameters and measurements for this program duplicated those of earlier studies made at Ames Research Center with a variable-stability airplane and with a pitch-roll chair flight simulator. Particular emphasis was placed on the minimum basic damping and stability the pilots would accept and on the minimum dynamics they considered controllable in the event of stability-augmentation system failure. Results of the centrifuge-simulator program indicated that small positive damping was required by the pilots over most of the frequency range covered for configurations rated acceptable for emergency conditions only (e.g., failure of a pitch damper). It was shown that the pilot's tolerance for unstable dynamics was dependent primarily on the value of damping. For configurations rated acceptable for emergency operation only, the allowable instability and damping corresponded to a divergence time to double amplitude of about 1 second. Comparisons were made of centrifuge, pitch-chair and fixed-cockpit simulator tests with flight tests. Pilot ratings indicated that the effects of incomplete or spurious motion cues provided by these three modes of simulation were important only for high-frequency, lightly damped dynamics or unstable, moderately damped dynamics. The pitch- chair simulation, which provided accurate angular-acceleration cues to the pilot, compared most favorably with flight. For the centrifuge simulation, which furnished accurate normal accelerations but spurious pitching and longitudinal accelerations, there was a deterioration of pilots' opinion relative to flight results. Results of simulator studies with an analog pilot replacing the human pilot illustrated the adaptive capability of human pilots in coping with the wide range of vehicle dynamics and the control problems covered in this study. It was shown that pilot-response characteristics, deduced by the analog-pilot method, could be related to pilot opinion. Possible application of these results for predicting flight-control problems was illustrated by means of an example control-problem analysis. The results of a brief evaluation of a pencil-type side-arm controller in the centrifuge showed a considerable improvement in the pilots' ability to cope with high-frequency, low-damping dynamics, compared to results obtained with the center stick. This improvement with the pencil controller was attributed primarily to a marked reduction in the adverse effects of large and exaggerated pitching and longitudinal accelerations on pilot control precision
LUNASKA simultaneous neutrino searches with multiple telescopes
The most sensitive method for detecting neutrinos at the very highest
energies is the lunar Cherenkov technique, which employs the Moon as a target
volume, using conventional radio telescopes to monitor it for nanosecond-scale
pulses of Cherenkov radiation from particle cascades in its regolith.
Multiple-antenna radio telescopes are difficult to effectively combine into a
single detector for this purpose, while single antennas are more susceptible to
false events from radio interference, which must be reliably excluded for a
credible detection to be made. We describe our progress in excluding such
interference in our observations with the single-antenna Parkes radio
telescope, and our most recent experiment (taking place the week before the
ICRC) using it in conjunction with the Australia Telescope Compact Array,
exploiting the advantages of both types of telescope.Comment: 4 pages, 4 figures, in Proceedings of the 32nd International Cosmic
Ray Conference (Beijing 2011
- …