46 research outputs found

    Heart-Kidney Interaction: Epidemiology of Cardiorenal Syndromes

    Get PDF
    Cardiac and kidney diseases are common, increasingly encountered, and often coexist. Recently, the Acute Dialysis Quality Initiative (ADQI) Working Group convened a consensus conference to develop a classification scheme for the CRS and for five discrete subtypes. These CRS subtypes likely share pathophysiologic mechanisms, however, also have distinguishing clinical features, in terms of precipitating events, risk identification, natural history, and outcomes. Knowledge of the epidemiology of heart-kidney interaction stratified by the proposed CRS subtypes is increasingly important for understanding the overall burden of disease for each CRS subtype, along with associated morbidity, mortality, and health resource utilization. Likewise, an understanding of the epidemiology of CRS is necessary for characterizing whether there exists important knowledge gaps and to aid in the design of clinical studies. This paper will provide a summary of the epidemiology of the cardiorenal syndrome and its subtypes

    Modeling Operating Speed and Deceleration on Two-Lane Rural Roads with Global Positioning System Data

    Full text link
    [EN] In the road design process, speed variation along the road segment is an important issue to consider in adapting road geometry to drivers' expectations. To achieve this objective, speed criteria are used to evaluate road consistency. Being able to estimate the operating speed in the design phase can lead to safer road alignment. With this objective, several researchers have developed operating speed models. Most of these models are based on collected spot speed data. They assume constant speed on curves and, therefore, deceleration that occurs entirely on the approach tangent. According to these assumptions, spot speed data are collected at the center of the horizontal curve and at the midpoint of the preceding tangent to obtain operating speed models. This paper presents a new methodology based on the use of Global Positioning System devices that allow continuous collecting and processing of speed data. With this new methodology, not only can new and more accurate operating speed models he developed, but cited hypotheses can also be checked. Observed speed continuous profiles allow studies that previously could not be done, especially as related to deceleration and speed variations. This study calibrated new speed models, including three for horizontal curves with a radius curve and the curvature change rate of a single curve as explanatory variables, and one for tangents that incorporates the curve speed model. Tangent-curve speed variations are evaluated, with comparison of Delta(85)V and Delta V(85), analysis of the deceleration length occurring on a curve, and development of two deceleration models.The authors thank the Center for Studies and Experimentation of Public Works of the Spanish Ministry of Public Works, which partially subsidized the research. The authors also thank the Infrastructure and Transportation Department, General Directorate of Public Works, Valencian Government, Spain; the Valencian Provincial Council; and the Ministry of the Interior, General Directorate of Traffic, Spain, for their cooperation in field data gathering.PĂ©rez Zuriaga, AM.; GarcĂ­a GarcĂ­a, A.; Camacho-Torregrosa, FJ.; D'attoma, P. (2010). Modeling Operating Speed and Deceleration on Two-Lane Rural Roads with Global Positioning System Data. Transportation Research Record. 2171:11-20. doi:10.3141/2171-02S1120217

    How brains make decisions

    Full text link
    This chapter, dedicated to the memory of Mino Freund, summarizes the Quantum Decision Theory (QDT) that we have developed in a series of publications since 2008. We formulate a general mathematical scheme of how decisions are taken, using the point of view of psychological and cognitive sciences, without touching physiological aspects. The basic principles of how intelligence acts are discussed. The human brain processes involved in decisions are argued to be principally different from straightforward computer operations. The difference lies in the conscious-subconscious duality of the decision making process and the role of emotions that compete with utility optimization. The most general approach for characterizing the process of decision making, taking into account the conscious-subconscious duality, uses the framework of functional analysis in Hilbert spaces, similarly to that used in the quantum theory of measurements. This does not imply that the brain is a quantum system, but just allows for the simplest and most general extension of classical decision theory. The resulting theory of quantum decision making, based on the rules of quantum measurements, solves all paradoxes of classical decision making, allowing for quantitative predictions that are in excellent agreement with experiments. Finally, we provide a novel application by comparing the predictions of QDT with experiments on the prisoner dilemma game. The developed theory can serve as a guide for creating artificial intelligence acting by quantum rules.Comment: Latex file, 20 pages, 3 figure

    Simulations of the Static Friction Due to Adsorbed Molecules

    Full text link
    The static friction between crystalline surfaces separated by a molecularly thin layer of adsorbed molecules is calculated using molecular dynamics simulations. These molecules naturally lead to a finite static friction that is consistent with macroscopic friction laws. Crystalline alignment, sliding direction, and the number of adsorbed molecules are not controlled in most experiments and are shown to have little effect on the friction. Temperature, molecular geometry and interaction potentials can have larger effects on friction. The observed trends in friction can be understood in terms of a simple hard sphere model.Comment: 13 pages, 13 figure

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits—the morphological, anatomical, physiological, biochemical and phenological characteristics of plants—determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits—almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Prevalence of Frailty in European Emergency Departments (FEED): an international flash mob study

    Get PDF
    Introduction Current emergency care systems are not optimized to respond to multiple and complex problems associated with frailty. Services may require reconfiguration to effectively deliver comprehensive frailty care, yet its prevalence and variation are poorly understood. This study primarily determined the prevalence of frailty among older people attending emergency care. Methods This cross-sectional study used a flash mob approach to collect observational European emergency care data over a 24-h period (04 July 2023). Sites were identified through the European Task Force for Geriatric Emergency Medicine collaboration and social media. Data were collected for all individuals aged 65 + who attended emergency care, and for all adults aged 18 + at a subset of sites. Variables included demographics, Clinical Frailty Scale (CFS), vital signs, and disposition. European and national frailty prevalence was determined with proportions with each CFS level and with dichotomized CFS 5 + (mild or more severe frailty). Results Sixty-two sites in fourteen European countries recruited five thousand seven hundred eighty-five individuals. 40% of 3479 older people had at least mild frailty, with countries ranging from 26 to 51%. They had median age 77 (IQR, 13) years and 53% were female. Across 22 sites observing all adult attenders, older people living with frailty comprised 14%. Conclusion 40% of older people using European emergency care had CFS 5 + . Frailty prevalence varied widely among European care systems. These differences likely reflected entrance selection and provide windows of opportunity for system configuration and workforce planning
    corecore