2,845 research outputs found
Nitrous oxide in fresh water systems: An estimate for the yield of atmospheric N2O associated with disposal of human waste
The N2O content of waters in the Potomac and Merrimack Rivers was measured on a number of occasions over the period April to July 1977. The concentrations of dissolved N2O exceeded those which would apply in equilibrium with air by factors ranging from about 46 in the Potomac to 1.2 in the Merrimack. Highest concentrations of dissolved N2O were associated with sewage discharges from the vicinity of Washington, D. C., and analysis indicates a relatively high yield, 1.3 to 11%, for prompt conversion of waste nitrogen to N2O. Measurements of dissolved N2O in fresh water ponds near Boston demonstrated that aquatic systems provide both strong sources and sinks for atmospheric N2O
STM/STS Study on 4a X 4a Electronic Charge Order of Superconducting Bi2Sr2CaCu2O8+d
We performed low-bias STM measurements on underdoped Bi2212 crystals, and
confirmed that a two-dimensional (2D) superstructure with a periodicity of four
lattice constants (4a) is formed within the Cu-O plane at T<Tc. This 4a X 4a
superstructure, oriented along the Cu-O bonding direction, is nondispersive and
more intense in lightly doped samples with a zero temperature pseudogap (ZTPG)
than in samples with a d-wave gap. The nondispersive 4a X 4a superstructure was
clearly observed within the ZTPG or d-wave gap, while it tended to fade out
outside the gaps. The present results provide a useful test for various models
proposed for an electronic order hidden in the underdoped region of high-Tc
cuprates.Comment: 4 pages, submitted to J. Phys. Soc. Jp
Measurements and analysis of the upper critical field on an underdoped and overdoped compounds
The upper critical field is one of the many non conventional
properties of high- cuprates. It is possible that the
anomalies are due to the presence of inhomogeneities in the local charge
carrier density of the planes. In order to study this point, we
have prepared good quality samples of polycrystalline
using the wet-chemical method, which has demonstrated to produce samples with a
better cation distribution. In particular, we have studied the temperature
dependence of the second critical field, , through the magnetization
measurements on two samples with opposite average carrier concentration
() and nearly the same critical temperature, namely
(underdoped) and (overdoped). The results close to do not
follow the usual Ginzburg-Landau theory and are interpreted by a theory which
takes into account the influence of the inhomogeneities.Comment: Published versio
The Effects of Phase Separation in the Cuprate Superconductors
Phase separation has been observed by several different experiments and it is
believed to be closely related with the physics of cuprates but its exactly
role is not yet well known. We propose that the onset of pseudogap phenomenon
or the upper pseudogap temperature has its origin in a spontaneous phase
separation transition at the temperature . In order to perform
quantitative calculations, we use a Cahn-Hilliard (CH) differential equation
originally proposed to the studies of alloys and on a spinodal decomposition
mechanism. Solving numerically the CH equation it is possible to follow the
time evolution of a coarse-grained order parameter which satisfies a
Ginzburg-Landau free-energy functional commonly used to model superconductors.
In this approach, we follow the process of charge segregation into two main
equilibrium hole density branches and the energy gap normally attributed to the
upper pseudogap arises as the free-energy potential barrier between these two
equilibrium densities below . This simulation provides quantitative
results %on the hole doping and temperature %dependence of the degree of the
charge inhomogeneity in agreement with %some experiments and the simulations
reproduce the observed stripe and granular pattern of segregation. Furthermore,
with a Bogoliubov-deGennes (BdG) local superconducting critical temperature
calculation for the lower pseudogap or the onset of local superconductivity, it
yields novel interpretation of several non-conventional measurements on
cuprates.Comment: Published versio
Uncertainty Analysis of NASA Glenn's 8- by 6-Foot Supersonic Wind Tunnel
An analysis was performed to determine the measurement uncertainty of the Mach Number of the 8- by 6-foot Supersonic Wind Tunnel at the NASA Glenn Research Center. This paper details the analysis process used, including methods for handling limited data and complicated data correlations. Due to the complexity of the equations used, a Monte Carlo Method was utilized for this uncertainty analysis. A summary of the findings are presented as pertains to understanding what the uncertainties are, how they impact various research tests in the facility, and methods of reducing the uncertainties in the future
Psychological distress from early adulthood to early old age: Evidence from the 1946, 1958 and 1970 British birth cohorts
Background: Existing evidence on profiles of psychological distress across adulthood uses cross-sectional or longitudinal studies with short observation periods. The objective of this research was to study the profile of psychological distress within the same individuals from early adulthood to early old age across three British birth cohorts. Methods We used data from three British birth cohorts: born in 1946 (n = 3093), 1958 (n = 13 250) and 1970 (n = 12 019). The profile of psychological distress - expressed both as probability of being a clinical case or a count of symptoms based on comparable items within and across cohorts - was modelled using the multilevel regression framework. Results In both 1958 and 1970 cohorts, there was an initial drop in the probability of being a case between ages 23-26 and 33-34. Subsequently, the predicted probability of being a case increased from 12.5% at age 36 to 19.5% at age 53 in the 1946 cohort; from 8.0% at age 33 to 13.7% at age 42 in the 1958 cohort and from 15.7% at age 34 to 19.7% at age 42 in the 1970 cohort. In the 1946 cohort, there was a drop in the probability of caseness between ages 60-64 and 69 (19.5% v. 15.2%). Consistent results were obtained with the continuous version of the outcome. Conclusions Across three post-war British birth cohorts midlife appears to be a particularly vulnerable phase for experiencing psychological distress. Understanding the reasons for this will be important for the prevention and management of mental health problems. [Abstract sourced from the publisher version of the article]
A universal high energy anomaly in angle resolved photoemission spectra of high temperature superconductors - possible evidence of spinon and holon branches
A universal high energy anomaly in the single particle spectral function is
reported in three different families of high temperature superconductors by
using angle-resolved photoemission spectroscopy. As we follow the dispersing
peak of the spectral function from the Fermi energy to the valence band
complex, we find dispersion anomalies marked by two distinctive high energy
scales, E_1=~ 0.38 eV and E_2=~0.8 eV. E_1 marks the energy above which the
dispersion splits into two branches. One is a continuation of the near
parabolic dispersion, albeit with reduced spectral weight, and reaches the
bottom of the band at the gamma point at ~0.5 eV. The other is given by a peak
in the momentum space, nearly independent of energy between E_1 and E_2. Above
E_2, a band-like dispersion re-emerges. We conjecture that these two energies
mark the disintegration of the low energy quasiparticles into a spinon and
holon branch in the high T_c cuprates.Comment: accepted for publication in Phys. Rev. Let
A momentum-dependent perspective on quasiparticle interference in Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta}
Angle Resolved Photoemission Spectroscopy (ARPES) probes the momentum-space
electronic structure of materials, and provides invaluable information about
the high-temperature superconducting cuprates. Likewise, the cuprate
real-space, inhomogeneous electronic structure is elucidated by Scanning
Tunneling Spectroscopy (STS). Recently, STS has exploited quasiparticle
interference (QPI) - wave-like electrons scattering off impurities to produce
periodic interference patterns - to infer properties of the QP in
momentum-space. Surprisingly, some interference peaks in
Bi_{2}Sr_{2}CaCu_{2}O_{8+\delta} (Bi-2212) are absent beyond the
antiferromagnetic (AF) zone boundary, implying the dominance of particular
scattering process. Here, we show that ARPES sees no evidence of quasiparticle
(QP) extinction: QP-like peaks are measured everywhere on the Fermi surface,
evolving smoothly across the AF zone boundary. This apparent contradiction
stems from different natures of single-particle (ARPES) and two-particle (STS)
processes underlying these probes. Using a simple model, we demonstrate
extinction of QPI without implying the loss of QP beyond the AF zone boundary
A guide to the cognitive measures in five British birth cohort studies
Explore the measures used to assess diverse aspects of cognition within and across five British birth cohort studie
- …